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Abstract. We describe a nonparametric method of estimating the AUC of an index βTx
when β is estimated from the same data, with a focus on nonparametric estimation of the
difference of the AUCs of two distinct indices. The difference in AUCs is a popular method
for comparing AUCs that has come under scrutiny due to the frequent misapplication of
a standard inferential method. Besides providing a valid inferential method for the case
where the difference of AUCs is nonzero, we enumerate many common situations in which
the standard method is applicable. We show by simulation that there is no great loss in
efficiency in using our more generally applicable estimator when the standard method is
applicable, while invalid application of the standard method may lead either to loss of Type
I or II error control. As an application, we apply the proposed method to re-analyze indices
based on the Framingham Heart Study.

1 Introduction

The AUC is a measure of how effectively a marker discriminates between two classes, and the
difference in AUCs compares the discrimination of two markers. In the medical sciences, the
marker is often a linear combination β of a set of subject characteristics x. We refer here to
βTx as an “index” and its AUC as an “index AUC.” In medical fields, comparison of markers
often takes the form of comparing two sets of patient characteristics x and y, with indexes
βTx, γTy. The characteristics are often nested, x ⊂ y, as when investigating the impact
on discrimination of additional factors y\x. The difference in AUCs has been described by
experts as one of the most widely used measures of the difference in discrimination (Demler
et al., 2017).

A related way of measuring the impact of additional covariates is to directly compare the
coefficients β and γ under models parameterized by β and γ. The result of this comparison
may conflict with the comparison of AUCs. A series of papers in the 2010s noted the
“baffling” and “perplexing” contradictions between the two methods, calling into question
the validity of the difference in AUCs when evaluating markers (Seshan et al., 2013; Tzoulaki
et al., 2009). While the source of the contradiction was soon identified (Demler et al., 2012,
2017; Seshan et al., 2013; Heller et al., 2017), remedies have been slower to arrive.We present
here a partial remedy, a method to nonparametrically estimate the difference in AUCs under
the assumption that it is nonzero.
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The remainder of the paper is organized as follows. Next we give more background on the
problem of inference on the difference of index AUCs and summarize approaches available in
the literature. In Section 3 we derive a nonparametric estimator for the difference of index
AUCs, along the way indicating the derivation of the standard estimator. In Section 4 we
briefly discuss some practical issues in applying the proposed estimator. In Section 5 we
discuss a range of examples both those when the standard estimator is valid and those when
the proposed estimator is needed, both for the index AUC itself and the difference in index
AUCs. In Section 6 we examine the finite-sample performance of the proposed estimator
and competing estimators. in Section 7 we apply the proposed estimator to re-analyze the
Framingham Heart Study data considered by Demler et al. (2011, 2017). We conclude and
suggest extensions and directions for future works in Section 8. Software implementing the
proposed estimator and the routines used in the simulation and data analysis sections are
publicly available at the second author’s website.

2 Background

An observation is modeled as a pair consisting of covariates W and a binary status indicator
D,

(W,D),W ∈ Rp, P (D = 0) = 1− P (D = 1) ∈ (0, 1). (1)

Denote by X0 ∼ F,X1 ∼ G the RVs and distributions obtained by conditioning W on D = 0
and D = 1. We use “control” and “case” generically to refer to these conditional RVs and
distributions. Let (W1, D1), . . . , (WM+N , DM+N), be an IID sample under (1), with the class
variables

X01, . . . , X0M
IID∼ F,X11, . . . , X1N

IID∼ G,M =
∑
{D = 0}, N =

∑
{D = 1}.

Vectors β̂ ∈ Rp and γ̂ ∈ Rp are obtained based on the sample by some procedure such
as logistic regression. They are assumed to have finite probability limits β∗ and γ∗ as
M,N →∞ under this procedure.

The AUC, measuring how effectively a scalar marker discriminates between two classes, is
the probability the marker associated with one class is less than a stochastically independent
marker associated with the other class, with ties weighted by half. A nonparametric estimator
of the AUC is the sample proportion of markers in one class less than the markers in the
other, with ties weighted by half. In the case that the markers are indexes with estimated
coefficient β̂, the estimator is

θ̂ =
1

MN

∑
i,j

ψ(β̂TX0i, β̂
TX1j), (2)

where ψ : (u, v) 7→ {u < v} + 1
2
{u = v}. The difference of index AUCs is estimated

nonparametrically by

∆θ̂ =
1

MN

∑
i,j

ψ(β̂TX0i, β̂
TX1j)−

1

MN

∑
i,j

ψ(γ̂TX0i, γ̂
TX1j). (3)
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In applied settings, an explicit probabilty model may not be specified, and often the estima-
tion methods for β̂ and γ̂ imply inconsistent models (see Example 6). Nevertheless inference
is sought (see Seshan et al. (2013) for enumerations of the many applications), particularly
1) whether the difference in the AUCs of the two markers β̂Tx and γ̂Tx is in some limiting
sense nonzero, and if so, 2) the magnitude of the difference. Assume here that limiting sense
is the difference of AUCs of the indexes at the starred parameters, so the target of inference
is

∆θ = P (β∗TX0i < β∗TX1j)− P (γ∗TX0i < γ∗TX1j). (4)

The statistic (3) may be viewed as a U-statistic process with two-sample kernel (x, y) 7→
ψ(βTx, βTy)−ψ(γTx, γTy), indexed by β, γ, and evaluated at the random vectors β̂, γ̂. This
statistic presents two complications for an analysis using basic U-statistics theory.

1. Under the null of no difference, ∆θ = 0, the statistic (4) is often a degenerate U-
statistic. The asymptotic distribution of a degenerate U-statistic is a weighted combination
of chi-squares, with weights depending on the distributions of the observations. In the case
of the difference of index AUCs, estimators have been presented only in a few specific cases,
e.g., Heller et al. (2017), and the null distribution for common coefficient estimation methods
such as logistic regression remains “intractable” (Lee, 2021).

Instead, the literature has proposed the use of more convenient testing problems equiva-
lent in certain settings to testing ∆θ = 0. Demler et al. (2011) show that when the covariates
are Gaussian and the coefficient estimation procedure is LDA, the null is the same as test-
ing for equality of the Mahalonobis distance between the two class distrbutions. An F-test,
valid in finite samples, may therefore be used instead of testing the AUC directly. Pepe
et al. (2013) describe a more general approach. The risk function for a binary RV D based
on a set of covariates W ∈ Rp, ρW : Rp → R, is the function w 7→ P (D = 1 | W = w).
Let (D0,W0,W

′
0), (D1,W1,W

′
1) be IID. The authors show that the null of equal AUCs of the

risks,

P (ρW,W ′(W0,W
′
0) < ρW,W ′(W1,W

′
1) | D0 = 0, D1 = 1)

= P (ρW(W0) < ρW(W1) | D0 = 0, D1 = 1)

holds if and only if the risk functions are equal, ρW,W ′ = ρW . Often the coefficient estimation
procedure is of secondary importance and the goal of testing the null ∆θ = 0 is to test if
certain additional covariates improve discrimination. In this case, the result shows that the
test may be based on the risks instead. Even if interest lies in testing for the difference
in AUCs where β̂, γ̂ are obtained through a particular estimation procedure, e.g., logistic
regression, for many estimation procedures there is a monotone link connecting the limiting
index to the risk, e.g., the expit function (see Example 3.1). Since the AUC is invariant to
monotone transformations, the risk may still be used to test for a difference.

A drawback to this approach is it requires knowing the true risk function. If the null
distribution of ∆θ̂ were available, one might directly compare the discrimination of the
indices β̂TW and γ̂TW, and possibly use the indices in practice, without knowing the correct
risk function. However, unless computing the null distribution of the ∆θ̂ calls for fewer
modeling assumptions, improved efficiency, or some other advantage, one may as well test
risk functions.

3



The null distribution of ∆θ̂ is analyzed in Michael et al. (2023) and we consider the
alternative case ∆θ 6= 0 in the remainder. Experts currently recommend first testing for
equality of risks, as just described, and producing confidence intervals for ∆θ only upon a
finding that ∆θ 6= 0 (e.g., Demler et al. (2017)). The focus in this paper on the alternative
∆θ 6= 0 has the goal of enabling practitioners to carry out this recommended course.

2. A second issue is that β̂, γ̂ are estimated from the data, so that the observations
on which the statistic (3) is based are not IID. Non-degenerate U-statistics with estimated
parameters are typically still normal though estimation of the parameter may affect the
asymptotic distribution. This issue is addressed in the remainder.

3 Theory

The usual approach to finding the asymptotic distribution of a non-degenerate U-statistic,
which we adopt, is to find an asymptotically equivalent IID average to which the CLT can
be applied. The asymptotic variance may then be estimated using the sample variance of
the terms of the IID average.

For control and case distributions F,G on Rp, a control observation X ∼ F and indepen-
dent case observation Y ∼ G, and a vector β, denote the AUC of the index P (βTX < βTY )
as

θ(F,G, β) =

∫
ψ(βTx, βTy)dF (x)dG(y).

where ψ(u, v) = {u < v} + 1
2
{u = v} for real u, v. With this notation, ∆θ̂ = θ(F̂ , Ĝ, β̂) −

θ(F̂ , Ĝ, γ̂). We write each of the two terms of the difference as an IID average, and later
take the difference to represent ∆θ̂ as an IID average. Decompose the centered estimate
θ(F̂ , Ĝ, β̂)− θ(F,G, β∗) as a sum of two terms, reflecting the two sources of estimation, the
AUC estimation and the coefficient estimation,

θ(F̂ , Ĝ, β̂)− θ(F,G, β∗)
= θ(F + δF,G+ δG, β∗ + δβ)− θ(F,G, β∗ + δβ) (5)

+ θ(F,G, β∗ + δβ)− θ(F,G, β∗) (6)

where δF = F̂ − F, etc. We give asymptotically linear representations of terms (5) and (6).
Term (5): As the function θ(·, ·, β) is bilinear for any β,

θ(F + δF,G+ δG, β∗ + δβ)− θ(F,G, β∗ + δβ)

= θ(δF,G, β∗ + δβ) + θ(F, δG, β∗ + δβ) + θ(δF, δG, β∗ + δβ). (7)

The third and final term in (7),

θ(δF, δG, β∗ + δβ) =

∫
(ψ(β̂Tx, β̂Ty))d(F̂ − F )(x)d(Ĝ−G)(y),

is o((M +N)−1/2). Heuristically, the integrand is nonnegative and bounded by 1, while the
integrators F̂ − F, Ĝ − G are each O((M + N)−1/2). For details see Michael et al. (2023),
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Lemma 1, showing that the term is in fact O((M + N)−1) uniformly in a neighborhood of
betastar.

Conditionally on any sequence of statuses D1, D2, . . ., for fixed β∗+δβ, the first two terms
in (7) are centered IID averages. That the randomness in δβ is asymptotically negligible at
the
√
M +N rate,

θ(δF,G, β∗ + δβ) + θ(F, δG, β∗ + δβ) = θ(δF,G, β∗) + θ(F, δG, β∗) + o((M +N)−1/2),

follows from empirical process theory, in particular “stochastic equicontinuity” of the empir-
ical processes β 7→ θ(δF,G, β), β 7→ θ(F, δG, β) Details of this calculation are carried out in
e.g., Sherman (1993), Sec. 5.

Therefore,

θ(F + δF,G+ δG, β∗ + δβ)− θ(F,G, β∗ + δβ)

= − 1

M

M∑
i=1

(1−G(β∗TX0i)− θ(F,G, β∗)) +
1

N

N∑
i=1

(F (β∗TX1i)− θ(F,G, β∗)) + o((M +N)−1/2)

(8)

=
1

M +N

M+N∑
i=1

(
− {Di = 0}
P (D = 0)

(1−G(β∗TWi)− θ(F,G, β∗)) +
{Di = 1}
P (D = 1)

(F (β∗TWi)− θ(F,G, β∗))
)

+ o((M +N)−1/2) (9)

This IID representation is known as the Hoeffding decomposition of a U-statistic (Hoeffiding,
1948). It may be helpful in this context to view it as the first von Mises derivative, a
type of functional derivative, so that ∆θ̂ − ∆θ is resolved as the sum of this functional
derivative, corresponding to (5), is resolved by a functional Taylor expansion and a usual
finite-dimensional Taylor expansion, discussed next, corresponding to (6). The above
derivation of the Hoeffding decomposition differs from the usual one to allow for random β̂,
and (9) shows that this randomness is asymptotically negligible, at least as far as term (5)
is concerned. In situations where term (6) is negligible, e.g., if β̂ = β were known rather
than estimated (see Section 5 for additional scenarios when (6) is negligible), the CLT may
be applied to get the asymptotic distribution of ∆θ̂. The approach of DeLong et al. (1988)
in such situations is to estimate F,G in (8) using the empirical CDFs F̂ , Ĝ,

− 1

M

M∑
i=1

(1− Ĝ(βTX0i)− θ(F̂ , Ĝ, β)) +
1

N

N∑
i=1

(F̂ (βTX1i)− θ(F̂ , Ĝ, β)),

and simply use the sample variance of the terms for inference.
Term (6): Assume

√
n(β̂ − β∗)→ 0 in probability, β 7→ θ(F,G, β) is differentiable at β∗.

Let the function ψβ̂ represent the estimator β̂ as an IID mean

β̂ − β∗ = (M +N)−1
M+N∑
i=1

ψβ̂(Wi) + o((M +N)−1/2)
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i.e., ψβ̂ is an influence function for β̂. Then (6) is

θ(F,G, β + δβ)− θ(F,G, β)

= (β̂ − β∗) ∂
∂β

θ(F,G, β) + oP ((M +N)−1/2)

=
∂

∂β
θ(F,G, β)(M +N)−1

M+N∑
i=1

ψβ̂(Wi) + oP ((M +N)−1/2).

Putting the two parts together,

θ(F̂ , Ĝ, β̂)− θ(F,G, β)

=
1

M +N

M+N∑
i=1

(
− {Di = 0}
P (D = 0)

(1−G(β∗TWi)− θ(F,G, β∗)) +
{Di = 1}
P (D = 1)

(F (β∗TWi)− θ(F,G, β∗))
)

+
∂

∂β
θ(F,G, β)

1

M +N

M+N∑
i=1

ψβ̂(Wi) + oP ((M +N)−1/2). (10)

Proposition 1. Given (W1, D1), . . . , (WM+N , DM+N) sampled under (1), and estimator β̂
based on the sample, assume

1. an influence function for β̂ is available,

2. P (D = 0) ∈ (0, 1),

3. θ(F,G, ·) is differentiable at β∗.

Then (M + N)−1/2(θ(F̂ , Ĝ, β̂) − θ(F,G, β∗)) is asymptotically normal with mean zero and
variance given by the variance of a term in (10). This variance may be consistently estimated
as
√
M +N times the sample variance of the terms in (10).

Take the difference with the same representation of another estimator, θ(F̂ , Ĝ, γ̂), to
obtain an IID representation of ∆θ̂.

Corollary 2. Given (W1, D1), . . . , (WM+N , DM+N) sampled under (1), and estimators β̂, γ̂
based on the sample, assume

1. the assumptions of Proposition 1 apply to β̂, γ̂ each,

2. β∗ 6= γ∗.

Then (M +N)−1(∆θ̂ −∆θ) is asymptotically normal with mean zero and variance given by
the variance of a term in the difference of IID means (10). This variance may be consistently
estimated as

√
M +N times the sample variance of the difference of terms as in (10)
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What goes wrong under the null? If β∗ = γ∗ then the main terms in the Hoeffding-type
decomposition (9) cancel when the difference is taken, leaving a term of order o((M+N)−1/2).
Moreover the derivatives in (6) are the same. In many situations where the index is derived
from a well-specified model the derivative is 0 for at least one of the two AUCs being
differenced. In that case (5) will also be o((M +N)−1/2), and ∆θ̂ will degenerate under the
usual

√
M +N normalization. The condition β∗ 6= γ∗ is just sufficient. It is possible that

in, e.g., a nested logistic model both full and reduced are misspecified, the Hoeffding term
degenerates, the derivative vanishes at neither β∗ nor γ∗, the influence functions of β̂ and γ̂
differ, and then the limit of ∆θ̂ is still normal.

4 Estimation

Using Proposition 1 for inference usually requires nuisance parameters to be estimated: The
CDFs F,G, the influence function, and the derivative term in (10). As mentioned in Section
3, even if the coefficient β were not estimated, the terms in the estimator corresponding to
the Delong statistic would still require estimating the CDFs. The influence function and
derivative term belong to the adjustment term (6) and represent an additional cost due
to estimating the coefficients. Substituting consistent estimated parameters into the IID
average is usually asymptotically negligible as long as the dependence is continuous, though
the efficiency of the convergence may be affected. Nonparametric estimation of the derivative
term, in particular, is often slower than the usual parametric rate as it requires estimating
a random function in an interval.

Since the index AUC is invariant to changes to the parameter in the radial direction,
P (βTX0 < βTX1) = P (cβTX0 < cβTX1), c > 0, it seems β is more naturally parameterized
using spherical coordinates. This transformation would reduce by 1 the dimension of the
nuisance parameters such as the derivative term. However, this transformation does not
seem to be used in practice and we follow convention inusing linear coordinates.

Proposition 1 does not require that β̂ or γ̂ be estimated by a correctly specified model,
only that they have some probability limit at the parametric rate. Though the procedure
for obtaining the estimate β̂ or γ̂ and the associated influence function ψ often involve some
parametric assumptions, we still term the procedure described here as “nonparametric”
since the estimator in Proposition 1 is valid under misspecification of the coefficient model.
Whatever the estimation procedure is it will be known to the analyst, so that an influence
function may be chosen, if one exists.

5 Examples

Section 3 decomposes the statistics θ̂ and ∆θ̂ as a sum of two terms (5), (6). The first
corresponds to the estimation of the AUC by a U-statistic. The second is an adjustment
term corresponding to the use of estimated coefficients. At times the adjustment vanishes
in the limit, and the estimation of the coefficient may be ignored. In this case the usual
Mann-Whitney U-statistic, in the case of θ, or the Delong statistic, in the case of ∆θ, may
be used for asymptotic inference, provided of course the AUCs are distinct, as discussed in
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Section 3. Whether or not the adjustment term vanishes, Proposition 1 may be used for
asymptotic inference.

We give examples of data and models where coefficient estimation may and may not be
ignored when carrying out asymptotic inference on the index AUC.

5.1 No effect of coefficient estimation

In the ordinary course, the coefficient estimation can be ignored in computing the index of a
smooth AUC iff its derivative is 0 at the probability limit of the coefficient, w in the notation
of Section 3. For the difference of two AUCs, the derivative of each must usually be 0 at the
respective coefficient probability limits, d

dβ
θ(F,G, β)|β=β∗ = d

dβ
θ(F,G, β)|β=γ∗ = 0.

5.1.1 AUC

We first give examples where the coefficient estimation may be ignored in estimating the
AUC of an index.

Example 1 (Estimator: MRC, covariate restrictions: none/nonparametric). The maximum
rank correlation method of computing the coefficients is

β̂ = arg max
β:|β|=1

θ(F̂ , Ĝ, β).

The method is nonparametric. By construction the empirical AUC is stationary at the
coefficient estimates, and under mild regularity conditions the AUC θ(F,G, β) is stationary
at the probability limit β∗, as well (Sherman, 1993).

While the MRC is a nonparametric maximizer of β 7→ θ(F,G, β), it may also happen
under parametric models that the derivative vanishes at the probability limit of the coefficient
vector. The following proposition, highlighted by McIntosh and Pepe (2002); Pepe et al.
(2013), furnishes a class of examples. For two real functions of W, f1 and f2, let the relation
f1 ∼(W,D) f2 hold iff f1(W) has the same conditional distribution given D as a strictly
increasing function of f2(W), i.e., there is a strictly increasing function h : R→ R such that
P (f1(W) < w|D = i) = P (h ◦ f2(W) < w|D = i) for all w ∈ R and i = 0, 1.

Proposition 3. Given a random vector (W,D), W continuous, D binary, with index AUC
θ(F,G, ·). Then,

1. The ROC curve of classifying D based on a real function of W is maximized pointwise
by the likelihood ratio w 7→ fW|D=1(w)/fW|D=0(w), equivalently, the risk of D based
on W, ρW(·).

2. The AUC of a real function f of W is maximal iff f ∼(W,D) ρW.

3. Given a coefficient estimate β̂ with probability limit β∗, if θ(F,G, ·) is differentiable
at β∗, and β∗TW ∼(W,D) ρW(W), then θ(F,G, β̂) and θ(F,G, β∗) have the same
asymptotic distribution.
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Proof. 1. The first claim is an application of the Neyman-Pearson Lemma, as pointed
out by McIntosh and Pepe (2002) . Let an FPR value α ∈ (0, 1) be given. Viewing
D as a parameter, the most powerful level α test of the null D = 0 versus the simple
alternative D = 1 based on W rejects for large values of the likelihood ratio of (W,D),
i.e., fW|D=1(W )/fW|D=0(W ). Therefore, the value of the ROC curve of the likelihood
ratio at α, which is the power of the Neyman-Pearson test, is maximal. Since the ROC
curve is the same for increasing functions of the likelihood, and the risk is the expit of
the log likelihood, the same holds of the risk.

2. Though markers not related by an increasing function may have the same AUC, since
the ROC curve of the risk is maximal, an index with the same AUC must have the same
ROC curve. The latter does imply the index has the same conditional distributions as
an increasing function of the risk.

Example 2 (Coefficient estimator: any non-zero estimate, covariate restrictions: A single
covariate). When there is a single covariate, p = 1, the β in (2), for β 6= 0, cancels and the
requirement is simply that the risk be increasing in the sole covariate, i.e., that the covariate
or its negation be a risk factor.

Example 3 (Parametric models where index is monotonically related to the risk). The
derivative will vanish in smooth parametric models under which the index is monotonically
related to the risk function.

Example 3.1 (Coefficient estimator: binary response MLE, covariate restrictions: GLM
link). A prominent example where the index is an increasing function of the risk is the index
model for a binary response:

P (D = 1 | W = w) = h(βTw), β ∈ Rp.

The function h is strictly increasing, such as a probit link, logistic link, identity, etc.

Example 3.2 (Coefficient estimator: linear discriminant analysis, covariate restrictions:
multivariate Gaussian). With W | D = i ∼ N(µi,Σ), i = 1, 2, the LDA estimate of β
has probability limit β∗ = Σ−1(µ1 − µ0). The likelihood ratio fW|D=1(w)/fW|D=0(w) is an

increasing function of (µ1 − µ0)
TΣ−1w = β∗Tw. That the derivative vanishes also follows by

taking Σ0 = Σ1 in the upper bound given by Proposition 4.

Example 3.3 (Coefficient estimator: LDA, covariate restrictions: independent exponential
family covariates with mean parameters, etc.). Let component i of W, i = 1, . . . , p, have
conditional density givenD = j, j = 0, 1, of the form hi(w) exp(θijw−Aij). If the components
are independent, the likelihood ratio then satisfies

f(w | D = 1)

f(w | D = 0)
∼ (θ1 − θ0)Tw

With the usual LDA estimators, β∗ = Σ∗−1∆µ∗, where ∆µ∗ = A′1 − A′0 and Σ∗ is diagonal
with entries π0A

′′
i0 + π1A

′′
i1, i = 1, . . . , p, π0 = 1 − π1 = P (D = 0). If 1. the population
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variances are equal, i.e., π0A
′′
i0 + π1A

′′
i1 doesn’t depend on i, and 2. θi is the mean A′i, then

β∗Tw ∼ (A′1 − A′0)
Tw ∼ ρW(w). This application of LDA is not justified under the usual

LDA homoscedasticity assumption, as the parameter θj, j = 0, 1, may affect the variance
across classes. It turns out the coefficient estimation still does not affect the asymptotic
distribution of the index AUC.

With Gaussian data as in Example 3.2 but unequal class variances, or heteroscedastic
exponential family data as in 3.3 but non-independent covariates, the derivative of the AUC
coefficient limit need not vanish, as shown by the example in Section 5.2.

5.1.2 Difference of AUCs

Next we consider application of the examples given in Section 5.1.1 to two AUCs computed
from the same data, as when computing the difference.

Example 4. For a nonparametric estimator like MRC, Example 1, there is no further
difficulty. Both estimation procedures have a vanishing derivative. This example is discussed
in Heller et al. (2017).

Example 5. Likewise, there is no difficulty when one coefficient is estimated by a well-
specified parametric estimator and the other by a nonparametric estimator, or e.g. the
single covariate case where there is effectively no estimator. See, e.g., Fig. 1 in Demler et al.
(2017) and the corresponding simulation.

Example 6 (Parametric models). Next suppose both coefficient vectors being compared are
modeled parametrically, and consider specifically nested binary response models 3.1. First, if
neither the full model nor the reduced model is well spcified, there is no reason to expect the
derivative to vanish by virtue of 3.1 and in general coefficient estimation must be accounted
for. Second, if the reduced model is well-specified, then comparison with a superset of the
covariates will generally lead to the null situation, i.e., a degenerate U-statistic, as discussed
in Section 2. Finally, suppose that the full model is well-specified, e.g., when the full model
contains a superset of the model covariates, and the reduced model a strict subset of the
fuller set. In many cases correctness of the full model,

P (D = 1 | (W,W ′) = (w,w′)) = h(βT (w,w′)), for some β ∈ Rp+q (11)

implies the reduced model cannot be correct

P (D = 1 | W = w) = E(h(βT (w,w′)) | w) 6= h(βTw) for any β ∈ Rp.

As a result the derivative term contributed by the reduced set AUC will be nonzero and must
be accounted for. For the binary response model, the requirement is that the marginaliza-
tion does not break the model, i.e., the inequality in 6 is an inequality for some β in the
reduced model coefficient space. This condition is somewhat different from “collapsibility,”
the requirement that the coefficients belonging to the remaining covariates be the same after
integrating out an independent set of covariates. Some examples where this condition holds
are:
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Example 6.1 (Coefficient estimator: probit regession, covariate restrictions: Gaussian).
When h in (11) is the standard normal CDF and the covariates are multivariate Gaussian,
the marginalized model respects the probit link.

When h is the logistic function, and logistic regression is used to estimate the coefficients,
the marginalized risk is not generally a logistic function of the index. Several authors have
suggested, however, that the coefficient estimation may be ignored (Demler et al., 2011).
In fact, it may be shown that if the covariates are Gaussian, then for any link function h,
the adjustment term vanishes only when the coefficients under the marginalized model are
the coefficients that would be obtained under a probit model. Therefore the adjustment
term does not usually vanish when the coefficients are estimated under logistic regression.
However, the difference may be negligible, so that in practice the coefficient estimation may
be ignored. A heuristic reason to expect a small adjustment term is that the logistic risk is
often close to the probit risk, where the adjustment does vanish.

Example 6.2 (Coefficent estimator: LDA, covariate restrictions: Gaussian). When the full
model is a well-specified Gaussian LDA model 3.2, the reduced model will be as well. This
example is discussed in Demler et al. (2011) and considered further in Sections 5.2 and 6.
LDA models are collapsible more generally, but the index may not be an increasing function
of the risk/likelihood without the Gaussian assumption.

5.2 Coefficient estimation affects inference

Next we describe a situation where estimation of the coefficient must be accounted for when
conducting inference on the difference of AUCs or even just a single AUC. The setting is a
misspecification of the parametric model 3.2 where, but for the misspecification, coefficient
estimation would not affect the asymptotic distribution. The nonparametric estimator pro-
vides the required adjustment missing from the basic Delong estimator, and may therefore
be viewed as a robust estimator.

Suppose Gaussian linear discriminant analysis is applied to estimate the coefficient vec-
tor but the model is possibly misspecified in that the two classes may not have the same
covariance. The model is:

W|D = d ∼ Fd = Np(µd,Σd),Σd > 0, d ∈ {0, 1}, µ1 6= µ0

P (D = 1) = 1− P (D = 0) = π1.
(12)

The parameters are µd,Σd, and πd, d ∈ {0, 1}, for which sufficient statistics are given by the
2p(p+ 1) + 1 terms of T = (

∑
Di,
∑
DiWiWi

T ,
∑
DiWi,

∑
(1−Di)WiWi

T ,
∑

(1−Di)Wi).

LDA bases class membership on the sign of β̂Tx, where

β̂ = Σ̂−1(µ̂1 − µ̂0)

µ̂1 − µ̂0 = N−1
∑
i

X1i −M−1
∑
i

X0i = T3/T1

Σ̂ = (M +N)−1

(∑
i

(X0i − µ̂0)(X0i − µ̂0)
T +

∑
i

(X1i − µ̂1)(X1i − µ̂1)
T

)
= (M +N)−1(T2 − T3T3T/T1 + T4 − T5T5T/T1).

11



An intercept is usually computed when carrying out LDA but may be ignored here since the
AUC is invariant to shifts. The LDA parameter estimates, under the unmet assumption of
a common variance for the two classes, tend in probability to

β∗ = Σ∗−1(µ1 − µ0)

Σ∗ = π0Σ0 + π1Σ1

Let Σ = (Σ0+Σ1)/2. The index AUC and its partial derivative with respect to the coefficient
vector, evaluated at the probability limit β∗, are

θ(F,G, β∗) = Φ

(
β∗TΣ∗β∗√
2β∗TΣβ∗

)
> 1/2

∂

∂β
θ(F,G, β∗) = (π1 − π0)φ

(
β∗TΣ∗β∗√
2β∗TΣβ∗

)
β∗T

(2β∗TΣβ∗)3/2
((β∗TΣ1β

∗)Σ0 − (β∗TΣ0β
∗)Σ1).

The derivative is 0 at β∗ iff (βTΣ0β)Σ1β = (βTΣ1β)Σ0β for β = β∗, equivalently, β∗ is
an eigenvector of Σ−10 Σ1. For example, if the covariates are independent with a common
variance, Σd ∝ I, the derivative will be 0. As a second example, if Σ0 ∝ Σ1, then Σ−10 Σ1 ∝ I
and again the derivative vanishes. The first example is already implied by the general
exponential family result in Example 3.3 above but not the second as here the components
are not necessarily independent, as required by that result. Even when the derivative is large,
its effect may be mitigated. When Σ ≈ Σ∗, the derivative term is approximately O(|Σ|1/2),
whereas the influence function is approximately O(|Σ|−1/2), the root of the inverse Fisher
information, so that the product, giving the entire adjustment term, is approximately O(1).

The size of the adjustment term typically grows with the imbalance between the classes,
as shown in Proposition 4. One therefore expects that under this scenario inference based
on the Delong estimator will be faulty, as seen in the simulations in Section 6.

Proposition 4. Let (W,D) follow (12), with full rank conditional covariance matrices
Σd, d = 0, 1, and let ψβ̂ be the influence function of β̂ based on a sample of size n. Then,

1. The standard deviation of the adjustment term is given by

sd(
∂

∂β
θ(F,G, β)

√
nψβ̂) =

∣∣∣∣(nVarψβ̂)1/2
∂

∂β
θ(F,G, β)

∣∣∣∣
= φ

(
β∗TΣ∗β∗√
β∗TΣβ∗

)
|π1 − π0|

(β∗TΣβ∗)3/2

∣∣∣(Σ∗−1 (Σ0/π0 + Σ1/π1) Σ∗−1
)1/2 (

(β∗TΣ1β
∗)Σ0 − (β∗TΣ0β

∗)Σ1

)
β∗
∣∣∣ .

Therefore the adjustment term vanishes when the classes are balanced, π0 = π1 = 1/2,
or the model is homoscedastic, Σ0 = Σ1.

2. The adjustment term vanishes iff the LDA parameter β∗ is an eigenvector of Σ−10 Σ1,
equivalently, if µ1 − µ0 is an eigenvector of ΣΣ∗−1.
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3. Consider the sub-model of (12) where the covariates are independent, i.e., Σ0 and Σ1

are diagonal, and π1 > 1/2. The parameters of this sub-model are π1 > 1/2, β, and
the diagonal entries of Σ0 and Σ1, denoted Σ0ii and Σ1ii, 1 ≤ i ≤ p. Then

(nVarψβ̂)1/2
∂

∂β
θ(F,G, β)

= φ

(
β∗TΣ∗β∗√
2β∗TΣβ∗

)
π1 − π0

(2β∗TΣβ∗)3/2

(
. . .

√
Σ0ii

π0
+

Σ1ii

π1

(β∗TΣ1β
∗)Σ0ii − (β∗TΣ0β

∗)Σ1ii

π0Σ0ii + π1Σ1ii

βi . . .

)t

.

Therefore if π0 → 0 and for some i Σ1ii → 0 at the same time, with the remaining
parameters held fixed, then the standard deviation of the adjustment term →∞.

6 Simulation

We examine by simulation the coverage rate of the proposed and standard estimators of
the index AUC and of the difference of AUCs. To do so we postulate nested models for
the covariates on which the AUCs are based. Nesting models the practice of forming the
AUC based on a set of covariates, removing one or more covariates, forming the AUC on the
reduced set of covariates, and taking the difference of the AUCs. The analysis considers CIs
for the full model AUC, reduced model AUC, and the difference. Besides the CI based on the
proposed variance estimator, we also form CIs based on the standard Delong and bootstrap
variance estimators. Also included is an “oracle” CI that uses the parametric form of the
derivative, but estimates all other quantities. It is included primarily to illustrate the impact
of nonparametrically estimating the derivative at the probability limit of the coefficient
estimates.

6.1 Simulation settings

We consider two sets of nested models for the data. They are both sub-models of the
heteroscedastic LDA model (12), and in fact the sub-model given in Proposition 4. These
two sets of nested models are chosen to demonstrate that both poor coverage and poor power
may result from failing to take into account the adjustment term (6).

1. Model 1. Reduced model: Σ
(r)
0

p(r)×p(r)
= s(r)Ip(r) , s

(r) ∈ R, Σ
(r)
1

p(r)×p(r)
= Ip(r) , and β(r)

p(r)×1
=

b(r)1p(r) , b
(r) ∈ R. Full model: Σ

(f)
0

p(f)×p(f)
is formed by appending s(f) > 0 along the

diagonal of Σ
(r)
0 , Σ

(f)
1

p(f)×p(f)
= Ip(f) , and β(f)

p(f)×1
is formed by appending b(f) ∈ R to β(r).

The parameters are s(r), b(r), s(f), b(f), all real-valued.

2. Model 2. Reduced model: Σ
(r)
0

p(r)×p(r)
is diagonal with half the diagonal entries set to ε > 0

and the other half 2s
(r)
0 − ε, s

(r)
0 ∈ R, Σ

(r)
1

p(r)×p(r)
is diagonal with half the diagonal entries

13



set to ε > 0 and the other half 2s
(r)
1 − ε, s

(r)
1 ∈ R, and β(r)

p(r)×1
= 1p(r) . Full model: Σ

(f)
0

p(f)×p(f)

and Σ
(f)
1

p(f)×p(f)
are formed by appending s

(f)
0 > 0 and s

(f)
1 > 0, respectively, along the

diagonals of Σ
(r)
0 and Σ

(r)
1 , and β(f)

p(f)×1
= 1p(f) . The parameters are s

(r)
0 , s

(r)
1 , s

(f)
0 , s

(f)
1 , ε,

all positive reals.

In the first model, the class covariance matrices Σ
(r)
0 ,Σ

(r)
1 ,Σ

(f)
1 , are all proportional to the

identity, and the difference of the AUCs between the full and reduced model is specified by
solving for the components b(r), b(f) of β∗. In the second model, the full coefficient vector
β∗ is a constant vector, and the difference of the AUCs between the full and reduced model
is specified by solving for the parameters s

(r)
0 , s

(r)
1 , s

(f)
0 , s

(f)
1 determining the class covariance

matrix. In both models, there is a nonzero adjustment term (6) in the difference of the
AUCs when π1 6= 1/2. However, between these two models we can see two different ways in
which this adjustment term may arise from the full and reduced models that underlie the
difference in AUCs. Whereas in the second model both the full and reduced models require
adjustment, in the first only the full model requires adjustment, the reduced model class
covariance matrices being proportional to the identity matrix (Proposition 4).

In the results below, the full model and reduced models have p(f) = 7 and p(r) = 6
covariates, corresponding to an analysis of the impact of a single covariate on the AUC. The
true AUC of the full model and reduced models are .8 and .77, so the true difference in
AUCs is .03. The sample size is varied from 500 to 5,000. As discussed in Section 5.2, the
magnitude of the adjustment required due to coefficient estimation is related to the class
proportions in the LDA model, with no adjustment being required for balanced classes. We
consider 3 levels of class imbalance, π1 = .5, .75, .9. The sample size, difference in AUC, class
imbalance, and other settings were informed by the data analysis in Demler et al. (2017)
and may be easily changed in the supplied software.

6.2 Simulation results

Results are presented in Figure 1 and 1. When there is no class imbalance, π1 = 1/2, the
estimators approximate the nominal rate, with the exception of the bootstrap under Model
2. The CI lengths of the proposed estimator are nearly identical to the Delong estimator,
suggesting there is little loss of efficiency in estimating the adjustment to be 0.

When a class imbalance is present, as expected from Proposition 4, the Delong estimator,
which does not take into account the coefficient estimation, does not approximate the nominal
rate, with performance deteriorating with the magnitude of the imbalance. The bootstrap
does not fare well either. Under Model 1, the Delong CI falls far below the nominal rate,
whereas the bootstrap CI is underpowered. Under Model 2, the situation is reversed.

The results for Model 2 suggest that the FPR under the bootstrap, though far below the
nominal rate, appears to improve with sample size. It does appear from further simulation,
not presented here, that the bootstrap does eventually approximate the nominal rate. In
these simulations the bootstrap’s performance given sample sizes on the order of n = 100k
is become comparable to the proposed estimator’s at the sample sizes presented in Figure
1, corresponding to a relative efficiency on the order of 1/20. However, unlike the Delong
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estimator, the bootstrap estimator does appear to be consistent, though its inefficiency is
prohibitive for many settings.

The proposed estimator approximates the nominal rate. There does not appear to be
much difference between the oracle and proposed estimators, suggesting nonparametric ap-
proximation of the gradient at β∗ is not a problem at these sample sizes.

7 Data Analysis

We re-analyze the Framingham Heart Study set analyzed in Demler et al. (2011, 2017). The
FHS followed 8,223 individuals free of cardiovascular disease at baseline. The outcome of
interest was the presence of coronary heart disease in a 12-year follow-up, which 7.5% of the
participants developed. The FHS data forms the basis of the Framingham Risk Score for
10-year risk of cardiovascular disease. More information on the study and risk score may be
found in D’Agostino Sr et al. (2008).

We compare how well several indices based on logistic regression discriminate between
individuals who did and did not develop CHD. Specifically, we form CIs for ∆θ = θ−θ′ where
the AUCs θ is an index AUC where the index is based on a full set of covariates and θ′ is an
index AUC obtained after omitting a covariate from the full set. Let Di = 1 or = 0 as subject
i did or did not develop CHD, let wi denote the full vector of subject i’s predictors, and let
x1, . . . , xm, and y1, . . . , yn, enumerate these predictors for control and case subjects. The full
set of covariates w consists of a smoking indicator, age, systolic and diastolic blood pressure,
a diabetes indicator, and total and high-density lipoprotein cholesterol. The coefficient
vector β̂ is obtained by fitting the logistic regression P (D = 1) = σ(α + βTw), where σ
is the logistic function. The reduced set of vectors w′ is obtained by omitting one of the
predictors in w, and the coefficient vector γ̂ is obtained by fitting the logistic regression
P (D = 1) = σ(α′ + γTw′).

CIs were formed using the variance estimate given by Corollary 2 as well as the unadjusted
Delong estimator. The CI given by Corollary 2 assumes β∗ 6= γ∗. The reduced sets of
covariates are therefore formed by omitting only significant covariates from the full set w,
where the significance is determined by logistic regression on the full set. All covariates in
w except systolic and total blood pressure are significant at the 5% level. This approach is
consistent with the guidance given in Pepe et al. (2013) to assess significance first and only
then consider CIs for ∆θ̂.

The resulting CIs are plotted in Figure 2. The CIs formed with the adusted estimator are
similar to the unadjusted estimator throughout. This result corroborates the argument given
in Demler et al. (2011, 2017) that no adjustment is necessary when the index AUC coefficients
are obtained using logistic regression: No adjustment is necessary when β̂, γ̂ are obtained
by LDA (see Example 3.2), and as the coefficients in a well-specified logistic regression are
known to have the same probability limit as LDA coefficients, the same holds when β̂, γ̂
are obtained by logistic regression, at least asymptotically. This argument does not seem in
and of itself to justify the conclusion that no adjustment is necessary. While well-specified
logistic and LDA models coefficients will converge to the same limit, it is typically not the
case that a logistic model and reduced logistic model obtained after omitting covariates are
simultaneously consistent. Unlike LDA, the logistic model is not collapsible (see Example 6).
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As a consequence, one of the index AUCs that show up in the differnce, either based on β̂
or γ̂, will require adjustment. Nevertheless, the conclusion that the adjustment is negligible
does appear to hold. A reason suggested in Example 6 is that probit regression is collapsible
and therefore requires no adustment if well-specified, and the difference between logistic and
probit coefficients is negligible.

8 Discussion

We have described a nonparametric method of estimating the index AUC when the index co-
efficients are estimated from the same data on which the AUC estimate is based. The method
applies directly to testing for the difference of index AUCs with estimated coefficients, when
the two AUCs are in the limit distinct. The method described above applies not only to
testing indexes based on nested data sets, perhaps the most common situation, but more
generally to a comparison of any correlated AUCs with index coefficients estimated from
the data, e.g., LDA versus logistic. The method is easily extended to other differentiable
functions of the data, not just an index. For example, in the heteroscedastic LDA exam-
ple considered in Section 5.2, a common solution would be to use quadratic discriminant
analysis, though the marker in this case would be a quadratic function of the covariates.
An important limitation of the method described here is the requirement that the coeffi-
cient estimation procedure have an influence function, excluding many modern classification
techniques.

While we have described inference that accounts for the adjustment ignored by the stan-
dard error, we have also described many situations in which no adjustment is needed. Even
in the heteroscedastic LDA model, where the adjustment term can be arbitrarily large, the
unadjusted estimator performs reasonably when the class imbalance across cases and controls
is not very extreme. These results justify the use of the standard Delong estimator in spite
of the unmet assumption of IID data, but they typically require parametric assumptions.
The proposed estimator may therefore be viewed as a robust estimator, enabling inference
despite departures from the assumed model. From the presented simulation results, there is
not much loss of efficiency in using the robust estimator.
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(a) Model 1

(b) Model 2

Figure 1: Simulation comparing the coverage of nominal 95% CIs for the difference in AUCs.
In (a) the Delong CI has poor FPR and the bootstrap CI has poor power. The situation is
reversed in (b).
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Figure 2: Confidence intervals for the difference in index AUCs estimated using the FHS
data. One index AUC is computed using a full set of 7 covariates, and the other is obtained
by omitting one of 6 variables. The adjusted and unadjusted estimators are nearly the same,
as conjectured by Demler et al. (2017).
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n 500 2500 4500
imbalance estimator
0.1 bootstrap 0.988 (0.050) 0.997 (0.026) 0.997 (0.021)

Delong 0.803 (0.027) 0.822 (0.012) 0.823 (0.009)
oracle 0.908 (0.036) 0.937 (0.016) 0.922 (0.012)
proposed 0.947 (0.044) 0.923 (0.017) 0.917 (0.012)

0.25 bootstrap 0.966 (0.042) 0.996 (0.022) 0.987 (0.017)
Delong 0.840 (0.028) 0.882 (0.013) 0.860 (0.009)
oracle 0.918 (0.035) 0.963 (0.015) 0.940 (0.012)
proposed 0.920 (0.036) 0.956 (0.015) 0.934 (0.011)

0.5 bootstrap 0.921 (0.043) 0.959 (0.020) 0.958 (0.015)
Delong 0.922 (0.043) 0.948 (0.019) 0.956 (0.015)
oracle 0.922 (0.043) 0.948 (0.019) 0.956 (0.015)
proposed 0.922 (0.044) 0.951 (0.019) 0.953 (0.014)

(a) Model 1

n 500 2500 4500
imbalance estimator
0.1 bootstrap 0.880 (0.056) 0.906 (0.028) 0.936 (0.023)

Delong 0.984 (0.097) 0.994 (0.045) 0.994 (0.034)
oracle 0.940 (0.073) 0.954 (0.033) 0.953 (0.025)
proposed 0.969 (0.080) 0.950 (0.033) 0.949 (0.025)

0.25 bootstrap 0.930 (0.046) 0.939 (0.022) 0.940 (0.017)
Delong 0.979 (0.067) 0.990 (0.030) 0.990 (0.023)
oracle 0.950 (0.053) 0.949 (0.024) 0.960 (0.018)
proposed 0.959 (0.056) 0.954 (0.024) 0.959 (0.018)

0.5 bootstrap 0.848 (0.032) 0.815 (0.014) 0.818 (0.010)
Delong 0.932 (0.043) 0.950 (0.020) 0.942 (0.015)
oracle 0.932 (0.043) 0.950 (0.020) 0.942 (0.015)
proposed 0.941 (0.046) 0.949 (0.020) 0.944 (0.015)

(b) Model 2

Table 1: Simulation comparing the coverage of nominal 95% CIs for the difference in AUCs.
In (a) the Delong CI has poor FPR and the bootstrap CI has poor power. The situation is
reversed in (b).
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