
Testing for a difference in AUCs based on LDA fitted values

Abstract: When the AUCs of summary biomarkers are compared, the data used for inference is often
clustered. For example, patients may contribute a series of measurements from several hospital visits,
in which case the measurements belonging to a given patient may be strongly auto-correlated. However,
current tests for a difference in summary biomarkers assume IID data. We extend the test for a difference in
summary biomarkers to allow for dependence among the observations. Our “cluster-robust” test allows for
both dependence among a given subject’s measurements and also across arms, such as when a given subject
changes disease status and contributes measurements both when diseased and non-diseased. While assuming
that the marginal distribution of the observations is elliptically contoured, we make no strong assumptions
on the nature of the dependence. Our cluster-robust test therefore prevous tests, which are either restricted
to IID data, or to AUCs based on simple markers and not summary biomarkers.

Keywords: AUC, Clustered data, Elliptically contoured distributions

1 Introduction

The AUC is a measure of how effectively a marker discriminates between two classes, and the difference in
AUCs compares the discrimination of two markers. In the medical sciences, the marker is often a construction
of scientists, being constructed from other markers by a formula. Very often the marker takes the form β̂Tx,
where x is a vector of subject characteristics and β̂ is obtained by fitting a binary classification model
to case and control data. Comparison of markers then takes the form of comparing two sets of patient
characteristics x and y, with corresponding fitted values β̂Tx, γ̂T y. The characteristics are typically nested,
x ⊂ y, as when investigating the impact on discrimination of the additional factors that lie in y but not
x. The difference in AUCs has been described by experts as one of the most widely used measures of the
difference in discrimination (Demler et al., 2017).

Inference for the difference in AUCs, and in particular testing the null of no difference, is relatively
complicated (Michael et al., 2024). The asymptotic distribution of the empirical test statistic is in gen-
eral non-normal. An alternative approach is to bring parametric modeling to bear and use a simpler test
statatistic. Extending Su and Liu (1993), Doyle-Connolley and Michael (2024) shows that when the data is
multivariate Gaussian, the optimal decision rule, linear or otherwise, is the LDA decision rule. Demler et al.
(2011) then shows that testing for a difference in the AUCs of the resulting fitted values can be replaced
with testing for a difference of Mahalanobis distances, a well understood classical problem. Combining the
optimality property and the equivalence property shows that it makes sense to look at the Mahalanobis
distance to compare discrimination whenever data can be assumed Gaussian.

We extend the result of Demler et al. (2011) in two ways. First we show that the difference in LDA fit
AUCs is equivalent to the difference in Mahalanobis distances not just for Gaussian data but many elliptically
contoured random vectors. Then we propose a test of the null when the data is clustered.

In Section 2 we carry out the extensions of the Demler et al. (2011) result, proposing a hypothesis test
for the difference in LDA fit AUCs that is valid for possibly clustered elliptically contoured data. In Section
3 we examine the test’s finite-sample coverage and power by simulation relative to competing methods. .
Software implementing the proposed test as well as the routines for the simulations in Section 3 are publicly
available at the website of the first author.
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2 Theory

Suppose an analyst wishes to test for the improvement in discrimination between controls and cases, if
any, offered by using a new marker over a currently used marker or set of markers. The analyst must first
decide on the criterion for discrimination. Let X denote the marker or markers when drawn from a control
population, and Y when drawn independently from a case population. If X and Y are scalar, X,Y ∈ R,
then a standard summary of the marker’s capacity to discriminate between the controls and cases is the
AUC,

P (X < Y ) +
1

2
P (X = Y ). (1)

When, as is often the case, X and Y are vectors, the AUC is often computed on a summary statistic formed
by combining their components. If X and Y are multivariate Gaussian with a common variance,

X ∼ Nk(µx,Σ), Y ∼ Nk(µy,Σ) (2)

the optimal way to combine the components (Su and Liu, 1993; Doyle-Connolley and Michael, 2024) is the
LDA fitted values βLDA

TX,βLDA
TY , where

βLDA = Σ−1(µy − µx) (3)

This summary marker is optimal in the sense that any other real function f of the marker offers less
discrimination, as assessed by the AUC, than than the LDA fitted values,

|P (f(X) < f(Y ))− 1

2
| < |P (βLDA

TX < βLDA
TY )− 1

2
|.

Therefore, a straightforward way for the analyst to test for the improvement in discrimination when the
data is Gaussian is to compare the AUCs of the LDA fits. Let the combined markers be written as X =
(X1, X2), Y = (Y1, Y2), where X1 and Y1 represent the old markers when drawn from a control and case
population, respectively, and X2 and Y2 the new markers that are under scrutiny. Let βLDA1 = Σ−1

11 (µy1 −
µx1) be the LDA coefficients of the reduced data X1 and Y1. The difference in LDA AUCs is

∆AUC = P (βLDA
TX < βLDA

TY )− P (βLDA
T
1 X1 < βLDA

T
1 Y1) (4)

and the analyst is interested in testing H0 : ∆AUC = 0.
Implementing this test using off-the-shelf methods has led to faulty inferences. Suppose the analyst has

a set of control and case markers known or assumed to be homoscedastic Gaussian,

X1, . . . , Xnx ∼ N(µx,Σ)

Y1, . . . , Ynx ∼ N(µy,Σ)
(5)

Often the analyst uses this same data to estimate the LDA coefficients (3) and resulting fits,

β̂TLDAX1, . . . , β̂
T
LDAXnx

, β̂TLDAY1, . . . , β̂
T
LDAYny

,

where β̂LDA = Σ̂−1(µ̂y − µ̂x),
(6)

as to test the null H0 : ∆AUC = 0. The standard test of the null (DeLong et al., 1988), however, assumes

independent observations, and this assumption is violated by the common β̂LDA in (6). The consequences of
this violation, including loss of power, are not specific to the Gaussian or LDA setups considered here, and
have been extensively discussed in the biostatistics literature, see, e.g., Seshan et al. (2013); Tzoulaki et al.
(2009); Demler et al. (2012); Heller et al. (2017) and the references there.

As a remedy, Demler et al. (2011) bypass the standard test of DeLong et al. (1988). Since the difference
in LDA AUCs for the data (5) is simply

P (βLDA
T (Y −X) > 0)− P (βLDA

T
1 (Y1 −X1) > 0)

= Φ((µY − µX)TΣ−1(µY − µX)/
√

2)− Φ((µY 1 − µX1)T (Σ11)−1(µY 1 − µX1)/
√

2)

= Φ(∆/
√

2)− Φ(∆1/
√

2),

(7)
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testing the null H0 : AUC = AUC1 is the same as testing ∆ = ∆1, where ∆ = (µY − µX)TΣ−1(µY − µX)
and ∆1 = (µY 1 − µX1)T (Σ11)−1(µY 1 − µX1) are the Mahalanobis distances between the control and case
distributions for the full and initial data. We formulate this equivalence more explicitly, using the fact that
the quantities in (7) only depend on the distribution of the difference W = Y −X ∼ N(µY − µX , 2Σ):

Given a family of random vectors indexed by θ ∈ Θ, let µ(θ) = Eθ(X), Σ(θ) = V arθ(X), and βLDA(θ) =
Σ(θ)−1µ(θ). We say that the Equivalence Principle holds for the family when, for all θ ∈ Θ, the LDA AUC
difference parameter vanishes,

Pθ(βLDA(θ)TW > 0)− Pθ(βLDA1(θ)TW1 > 0) (8)

= Pθ(µ(θ)TΣ(θ)−1W > 0)− Pθ(µ(θ)T1 Σ(θ)−1
11 W1 > 0) = 0, (9)

if and only if the Mahalanobis distance difference parameter vanishes,

µ(θ)TΣ(θ)−1µ(θ)− µ(θ)T1 Σ(θ)−1
11 µ(θ)1 = 0. (10)

Demler et al. (2011) show that the Equivalence Principle holds for multivariate Gaussians.
In the next section we extend the Equivalence Principleto elliptically contoured distributions. That is, we

show that when the data are drawn from an elliptically contoured distribution with second moments, testing
for a difference in LDA AUCs is the same as testing for a difference in Mahalanobis distance. To carry out the
latter test in this more general setting, we can no longer rely the F-test Demler et al. propose for Gaussian
data. In the subsequent section we give an asymptotic linearization of the difference in Mahalanobis distance
that is valid for non-Gaussian data. Moreover, using cluster-robust CLTs we can extend the use of our test
to dependent data, as we do in Section 2.3.

2.1 Elliptical distributions

A p-dimensional random vector X with variance Σ > 0 is said to be ellipitcally distributed when it has the
representation (Cambanis et al., 1981)

X ∼ µ+R
√
cΣ1/2U, (11)

where µ = E(X), R is a nonnegative random variable, Σ1/2 is the postive definite square root of Σ, U is a
random vector independent of R that is uniformly distributed on the sphere in Rp, and c = p/ER2. radial
variable r determines the characteristics of the distribution beyond the first 2 moments, e.g., normal, t,
the tail behavior. An elliptically distributed random vector is a spherically symmetric random vector after
application of an affine transformation.

In Demler 2011 the authors conjecture that the equivalence of maha distance and the lda auc for normal
random vectors may hold more generally for ellipitcally distributed random vectors. In general this conjecture
does not hold. Suppose that the radial function r is bounded, say uniform on [0, 1], and for simplicity take
the covariance Σ to be the identity. Let X,Y be samples from this family differing in their means µy, µx.
The distributions look like unit spheres at the tips of µY , µX . When µY and µX are far apart relative to
the unit radius spheres, Y − X ≈ µY − µX , and so βLDA

T (Y − X) ≈ |µY − µX |2 has no chance of being
negative. Consequently both terms of the LDA AUC difference parameter (8) are 1 and their difference
0, while nothing at all prevents the Mahalanobis difference from being > 0 or even large. The problem is
that, unlike the Mahalanobis distance, the AUC as a measure of discrimination maxes out with data that is
perfectly separated. In such a situation testing for no Mahalanobis difference as a substitute for a test of no
AUC LDA difference would lead to Type 1 errors in the original testing problem.

However, ruling out perfectly separable distributions, the conjecture does hold, as well as the converse.

Theorem 1. Let Θ represent an ellipitcal location-scale family, i.e., a family of ellipitcal distributions closed
under affine transformations. Assume that the radial function R has nonzero density on all of [0,∞). Then
the Equivalence Principle holds. Conversely, if the Equivalence Principle holds for a family of distributions
closed under affine transformations, then the distributions in the family are elliptical.
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Proof. The LDA AUC difference parameter is

Pµ,Σ(βLDA
TX > 0)− Pµ,Σ(βLDA

T
1 X1 > 0) (12)

= P (µTΣ−1(µ+R
√
cΣ1/2) > 0)− P (µT1 Σ−1

11 (µ1 +R
√
c(Σ1/2)1,1:2) > 0) (13)

= P (∆ +R
√
c∆

µTΣ−1/2

|µTΣ−1/2|
U > 0)− P (∆1 +R

√
c∆1

µT1 Σ−1
11 (Σ−1/2)1,1:2

|µT1 Σ−1
11 (Σ−1/2)1,1:2|

U > 0), (14)

with the last line using |µTΣ−1/2|2 = ∆ and |µT1 Σ−1
11 (Σ−1/2)1,1:2|2 = ∆1. Since U is spherically symmetric,

its projection onto any given unit vector in Rp has the same distribution as onto any other. Let ΠU denote
an RV with this common distribution. Assume first that ∆ 6= 0,∆1 6= 0. The last line is

P (∆ +R
√
c∆ΠU > 0)− P (∆1 +R

√
c∆1ΠU > 0) (15)

= P (R
√
cΠU > −

√
∆)− P (R

√
cΠU > −

√
∆1). (16)

Since it is assumed that the support of R is [0,∞), the CDF of R
√
cΠU is everywhere strictly increasing.

Therefore the LDA AUC difference (16) vanishes if and only if the Mahalanobis difference ∆−∆1 vanishes.
For those θ where ∆ = 0, also ∆1 = 0 since Σ > 0, and so the LDA AUC difference (16) is also 0. Similarly,
where ∆ 6= 0 but ∆1 = 0, the LDA AUC difference is P (R

√
cΠU > −

√
∆)− 1/2 6= 0.

Conversely, suppose the Equivalence Principle holds for the family Θ. Then for any RV X in the family
with mean µ and variance Σ, ∆ = ∆1 implies

0 = Pµ,Σ(µTΣ−1X > 0)− Pµ,Σ(µT1 Σ−1
11 X1 > 0) (17)

= P (µTΣ−1/2Z > −∆)− P (µT1 Σ
−1/2
11 Z1 > −∆1), (18)

where Z = Σ−1/2(X−µ) and Z1 is the first k components. Taking the mean to be cµ for fixed µ and c ∈ R, c 6=
0, the equality of the resulting maha distances is unaffected, c2∆ = c2∆1 iff ∆ = ∆1. If c > 0, by the above

∆ = ∆1 implies P (µTΣ−1/2Z > −c∆)−P (µT1 Σ
−1/2
11 Z1 > −c∆1), so the CDFs of µTΣ−1/2Z and µT1 Σ

−1/2
11 Z1

agree on all negative quantiles. If c < 0, ∆ = ∆1 implies P (µTΣ−1/2Z < −c∆) − P (µT1 Σ
−1/2
11 Z1 < −c∆1),

so the CDFs of µTΣ−1/2Z and µT1 Σ
−1/2
11 Z1 agree on all positive quantiles. Therefore, for any µ,Σ > 0,

∆ = ∆1 implies µTΣ−1/2Z
d
= µT1 Σ

−1/2
11 Z1. (19)

From (19), we deduce that Z is spherical in two stages. First we show the distribution of the projection
of Z1 onto a direction in Rk does not depend on the direction, so that Z1 is spherical. Then we show that
the projections of Z onto any direction in Rp have the same distribution as the common distribution of the
projections of Z1.

1. Let v ∈ Sk−1 be a fixed direction, and let u1 ∈ Sk−1 be a direction in the same proper half-space as
v, i.e., (u1, v) > 0. This half-space is the same as the set {Av : A > 0}, so let k × k A > 0 satisfy Au1 = v.
With u = (u1, u2) ∈ Sp−1 as before, u1 ∈ Sk−1 implies u2 = 0 ∈ Rp−k. Let

Σ =

(
A2 0
0 Ip−k

)
, µ = Σ1/2u =

(
v
0

)
. (20)

With this choice of parameters, ∆ = µTΣ−1µ = uTu = 1 and ∆1 = µT1 (Σ11)−1µ1 = vT (Σ11)−1v =
uT1 A(Σ11)−1Au1 = uT1 u1 = 1, so by (19)

vTZ1 = µTΣ−1/2Z
d
= µT1 (Σ11)−1/2Z1 = uT1 Z1. (21)

Therefore uT1 Z1 has the same distribution for any direction in the same half-space as v, and by covering
R
k with overlapping half-spaces, it follows that uT1 Z1 has a fixed distribution for any direction u1 ∈ Sk−1.

2. Given that Z1 is spherical, suppose that for any direction u ∈ Sp−1, µ ∈ Rp,Σ > 0 can be found

such that Σ−1/2µ = u and |(Σ11)−1/2µ1| = 1. Then by (19), uTZ
d
= µT1 (Σ11)−1/2Z1 where the projection

µT1 (Σ11)−1/2Z1 has a fixed distribution independent of u, the distribution of the LHS likewise does not
depend on u, i.e., Z is spherical, and the affine transformations {Σ1/2Z + µ : µ,Σ > 0} are elliptic.
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A choice of parameters satisfying this requirement is given for the case u1 6= 0 as

Σ1/2 =

(
Ik u1u

T
2 /(1− |u2|2)

u2u
T
1 /(1− |u2|2) C

)
, µ = Σ1/2u. (22)

The lower right block C left unspecified above is chosen given the other blocks of Σ1/2 to ensure Σ1/2 > 0.
For u in the lower dimensional subspace {u1 = 0} the distributions of uTZ are then determined by continuous
mapping, and must be the common distribution of uTZ for u1 6= 0.

If X,Y are independent, elliptically distributed random vectors with the same variance matrix, then
X−Y is elliptically distributed (Cambanis et al., 1981), and taking all affine transformations of X−Y gives
an elliptical location-scale family. The theorem then implies that testing for a difference between the full and
reduced AUCs, where the controls are distributed as X and cases as Y , is the same as testing for a difference
between the full and reduced Mahalanobis distances between X and Y . The control distribution X may
even belong to a different ellipitcal family than the case distribution Y , say multivariate normal controls and
multivariate t cases, as long as the variances are the same. When both control and case distributions are
normal, the homoscedasticity requirement can be dropped. The difference of independent Gaussian vectors
is Gaussian and therefore elliptically contoured, whether or not the variances are the same.

2.2 Testing for a difference in LDA AUCs

The benefit of the equivalence (Section 1) between testing for a differece in AUCs and a difference in
Mahalanobis distances is that the latter is relatively easy. Demler et al. (2011) shows that this equivalence
holds for homoscedastic Gaussian data, and a classical result refers the differences in Mahalanobis distance
between Gaussians to an F distribution. Specifically, given observations under the homoscedastic Gaussian
model (5), let the empirical Mahalanobis difference be

∆̂− ∆̂1 = (µ̂Y − µ̂X)T Σ̂−1(µ̂Y − µ̂X)− (µ̂Y 1 − µ̂X1)T (Σ̂11)−1(µ̂Y 1 − µ̂X1), (23)

where µ̂X and µ̂Y are sample averages of the controls and cases, and Σ̂ is the pooled variance estimator.
Then (Rao, 1973) under the null hypothesis that ∆ = ∆1,

(n− p− 1)(∆̂− ∆̂1)

(p− k)(1 + ∆̂1)
∼ Fp−k,n−p−1. (24)

Therefore the test that rejects when the above statistic exceeds the upper 1− α quantile of the Fp−k,n−p−1

distribution is a level α test for the difference in Mahalanobis distances, and so, by the the Equivalence
Principle, a level α test for the difference in LDA AUCs.

As we have shown the Equivalence Principle holds more broadly for elliptically contoured data, we
formulate a more general test. We use an parameter that is equivalent for our purposes,

ψ = µ2 − Σ21Σ−1µ1, (25)

with sample version

ψ̂ = µ̂2 − Σ̂21Σ̂−1µ̂1. (26)

The equivalence of H0 : ∆ = ∆1 and H0 : ψ = 0 follows from a block matrix decomposition.

Proposition 1. Given elliptically contoured distributions FX and FY with means µX , µY and common
variance Σ, and a sample

X1, . . . , XnX
∼ FX , Y1, . . . , YnY

∼ FY . (27)

1. Define

φ : (w,Σ) 7→ w2 − Σ21Σ−1
11 w1 (28)

ψ : (w,Σ) 7→ φ(w,Σ)wT1 Σ−1
11 (µY 1 − µX1). (29)
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Then as nX →∞, nY →∞,

ψ̂ − ψ =
1

nY

nY∑
i=1

(φ(Yi − µY ,Σ)− ψ(Yi − µY ,Σ))− 1

nX

nX∑
i=1

(φ(Xi − µX ,Σ) + ψ(Xi − µX ,Σ))

+oP (|µ̂X1 − µX1|+ |µ̂Y 1 − µY 1|+ |Σ̂11 − Σ11|).

(30)

2. Assuming FX and FY have 4 finite moments and nX/nY → ρ ∈ (0,∞), ψ̂ − ψ is asymptotically

normal. A consistent estimator ˆV ar(ψ̂) of its asymptotic variance is the sample variance of{
n

nY
(φ(Yi − µ̂Y , Σ̂)− ψ(Yi − µ̂Y , Σ̂)),

n

nX
(φ(Xj − µ̂X , Σ̂) + ψ(Xj − µ̂X , Σ̂))

}
1≤i≤nY ,1≤j≤nX

. (31)

3. An asymptotic level α test of H0 : ∆ = ∆1 based on the sample (27) rejects when
√
n|ψ̂|/

√
ˆV ar(ψ̂) >

z1−α/2.

Proof. The linearization (30) is a first-order Taylor expansion of the test statistic (26) in µ̂X , µ̂Y , and Σ̂.
The moment assumption in the second statement ensures the Taylor remainder is negligible.

The first part gives an IID sum asymptotically equivalent to the test statistic (26). Provided the data

are such that the summands have bounded variances, the CLT then implies that the test statistic ψ̂ is
asymptotically normal. Furthermore, its asymptotic variance can be estimated using the observed variance
of the terms in (31). The third part is the resulting hypothesis test. This test is based on the CLT, and can
be easily extended by an appropriate CLT variant to accommodate non-identically distributed data, or as in
the next subsection, longitudinal data. The difficulty in this extension is in interpretation when translating
the result of the test from Mahalanobis distances back to AUCs, as discussed below.

The F-test (24) has the comparative benefit of being valid for any sample size. In exchange for the loss of
finite sample validity, we are no longer resitricted to normally distributed data. The tests are asymptotically
equivalent in the homoscedastic Gaussian model, with the variances of the respective test statistics each
tending to

(ρ+ 1/ρ)(∆1 + 1)(Σ22 − Σ21Σ−1
11 Σ12). (32)

The finite-sample performance of the proposed test is examined in (sec:sim).

2.3 Longitudinal data

Diagnostic data is often clustered. For example, blood pressure and cholesterol readings may be collected
on subjects in a series of visits as a diagnostic for heart disease. In this case, besides the dependence in the
measurements from a given visit, we can expect dependence across a given subject’s visits. It is also possible
that the same individual contributes both control and case readings, such as when a subject changes disease
status in the course of a study. To model clustered data, suppose the control and case observations above
(27) are listed in a fixed way, and gi, 1 ≤ i ≤ n = nx + ny, indicates which of Gn clusters each observation
belongs to, 1 ≤ gi ≤ Gn:

Xi ∼ FX , Yj ∼ FY , 1 ≤ i ≤ nX , 1 ≤ j ≤ nY , with FX , FY elliptically contoured

E(Xi) = µX , E(Yi) = µY , V ar(Xi) = V ar(Yi) = Σ

X1 . . . XnX
Y1 . . . YnY

g1 . . . gnX
gnX+1 . . . gnX+nY

.

(33)

Cluster i, 1 ≤ i ≤ Gn, has ni =
∑
j{gj = i} observations. Observations belonging to the same cluster may

depend on each other in arbitrary ways, while the clusters are independent of each other. We assume that
the sizes of the clusters are uniformly bounded so that he number of clusters Gn grows with n.

Prop. 2 extends the test in Prop. 1 to accommodate clustered data of the type introduced.

6



Proposition 2. 1. Suppose data given as in (33) has 4 moments and there is a number C such that
ng < C, 1 ≤ g ≤ G. Let

Wi =

{
− n
nX

(φ(Xj − µX ,Σ) + ψ(Xj − µX ,Σ)) 1 ≤ i ≤ nX
n
nY

(φ(Yi − µY ,Σ)− ψ(Yi − µY ,Σ)) nX + 1 ≤ i ≤ n
(34)

Then ψ̂ − ψ is asymptotically normal with asymptotic variance given by 1
n

∑Gn

i=1E
(∑

j:gj=iWjW
T
J

)
.

2. Let ˆV ar(ψ̂) = 1
n

∑Gn

i=1E
(∑

j:gj=i ŴjŴ
T
J

)
, where Ŵi, i = 1, . . . , n, are formed as in (34) but using

√
n−consistent estimators in place of µX , µY ,Σ. An asymptotic level α test of H0 : ∆ = ∆1 based on the

sample (33) rejects when
√
n|ψ̂|/

√
ˆV ar(ψ̂) > z1−α/2.

Proof. The proposition follows from the linearization (30) and a cluster-robust CLT, such as given in Hansen
and Lee (2019).

As before, if data is elliptically contoured, the test given in Prop. 2 is a valid test for a difference in LDA
AUCs. If the data is also Gaussian, LDA is the optimal decision rule, and the test is for a difference in the
best diagnostics based on the data.

We comment on the assumptions. The cluster sizes are assumed to be bounded. A typical example is the
longitudinal study where many patients have their measurements observed over a fixed period of time. This
assumption can easily be relaxed to allow for unbounded cluster sizes, as long as the cluster sizes don’t grow
too fast relative to the total number of observations. The cost would be higher moment requirements than
the 4 assumed. An altogether different approach would be required for data where the cluster sizes grow at
the same or greater order than the total number of observations, such as if a fixed number of patients were
observed for an open-ended stretch of time.

Second, the reqirement that all observations have the same first 2 moments may appear restrictive. In
fact, this condition may be relaxed by using a triangular array CLT. The difficulty is in the interpretation
of the test of the null H0 : ∆ = ∆1. In the presence of dependence there are several concepts that can lay a
claim to being the proper generalization of the AUC (Michael et al., 2019; Michael and Tian, 2024). These
coincide when the first two moments are fixed.

3 Simulation

We examine the performance of the tests proposed in Section 2. We observe the rejection rate at the null,
assessing FPR control, and known alternatives, assessing power. We test both normal and nonnormal,
elliptically contoured data using the test in Prop. 1, and clustered and unclustered data using the test in
Prop. 2.

3.1 Data generation

A data set is generated by first sampling nX control and nY case observations of dimension p under FX and
FY , where FX and FY are elliptically contoured with means µX and µY , and common variance Σ. As in
(33), the observations are arranged in a fixed order, and cluster IDs gi, 1 ≤ gi ≤ G, 1 ≤ i ≤ n, indicating
which of G clusters an observation belongs to, are assigned randomly to the vector of observations. Next, G
p-dimensional vectors Z1, . . . , ZG, are sampled with mean 0 and variance σλI. Each of these effects is added
to all elements in the corresponding cluster, inducing dependence within the clusters, i.e., for all i such that
gi = j, Zj is added to observation i. The marginal variance of each observation is therefore Σ + σλI. The
marginal means and variance are related through

µY 2 − µX2 = ψ + Σ21Σ−1
11 (µY 1 − µX1) (35)

for ψ ∈ Rp−k. As defined in (25), ψ = 0 corresponds to the null case ∆ = ∆1, and ψ 6= 0 to alternatives.

7



3.2 Parameters

We take p = 5 and k = 4, so that the diagnostic effect of p−k = 1 additional covariate is under consideration.
The control and case distributions FX , FY are taken to be multivariate Gaussians and multivariate t’s.

We set nX = 50, 200, 1000, nY = 50, 200, 1000, n = nX + nY , partitioned among G = 2, 4, 40 groups
of equal size. Values of ψ ranging between 0 and .1 are chosen. The parameters Σ and µY 1 are chosen
randomly, Σ is scaled to unit variances, µX is set to 0, and µY is set for each value of ψ by (35). The random
effect variance is chosen to induce within-cluster correlation of magnitude σ2

λ/(1 + σ2
λ) = 0, .3, .6.

To interpret the alternatives given as Mahalanobis differences they are converted to the difference in LDA
AUC, which is the parameter of interest. For Gaussian FX and FY , the formula given in (7) can be used,
which maps Mahalanobis distance to AUC as ∆ 7→ Φ(∆/

√
2). When FX and FY are multivariate t with

ν > 2 degrees of freedom, the mapping from Mahalanobis distance to AUC is

∆ 7→ 1

2
− 1

π

((ν − 2)∆)ν/2

2ν−2Γ(ν/2)2

∫ ∞
0

tν−1Kν/2(t
√

(ν − 2)∆)2 sin(t∆)dt,

where K is the modified Bessel function of the second kind.

Proof. The p-dimensional multivariate t distribution can be parametrized by ν > 0, representing degrees of
freedom, mean µ ∈ Rp, and a positive definite p × p matrix Λ related to the variance through Σ = ν

ν−2Λ.
Suppose X and Y are multivariate t with means µX and µY , common degrees of freedom ν, and common
scale matrix Λ, and let βLDA = Σ−1(µY − µX) as before. The characteristic function of X is (Joarder and
Ali, 1996),

φX : t 7→ eit
TµX
|(νΛ)1/2t|ν/2

2ν/2−1Γ(ν/2)
Kν/2(|(νΛ)1/2t|), (36)

and analogously for Y . By a Fourier inversion formula (Gil-Pelaez, 1951), the AUC between X and Y is
then

P (βLDA
TX < βLDA

TY ) =
1

2
− 1

π

∫ ∞
0

t−1=(φβLDA
T (X−Y )(t))dt (37)

1

2
− 1

π

∫ ∞
0

t−1=(φX(tβLDA)φY (−tβLDA))dt. (38)

Since |(νΛ)1/2tβLDA| = |t|
√

(ν − 2)∆ and eitβLDA
T (µX−µY ) = e−it∆, (38) is

1

2
− 1

π

∫ ∞
0

t−1 (t
√

(ν − 2)∆)ν

2ν−2Γ(ν/2)2
Kν/2(t

√
(ν − 2)∆)2=(eitβLDA

TµXe−itβLDA
TµY )dt (39)

1

2
− 1

π

((ν − 2)∆)ν/2

2ν−2Γ(ν/2)2

∫ ∞
0

tν−1Kν/2(t
√

(ν − 2)∆)2 sin(t∆)dt. (40)

In this way 500 data sets were constructed for each combination of parameter settings. The test of the
null H0 : ∆ = ∆1 given in Prop. 2 was then applied to each, as well as the tests from Demler et al. (2011)
and DeLong et al. (1988). Whether a given test rejects or not was recorded and averaged over the data sets
to estimate the FPR (ψ = 0) and power (ψ 6= 0) of the tests.

3.3 Results

Results are given in Figs. 1 and 2 for Gaussian and t data. In the matrix of plots, sample size increases
along the rows and within-cluster correlation along the columns. The last two columns indicate that the
exact test does not control the FPR, which is unsurprising as the test’s independence assumption is violated.
The Delong test is underpowered throughout, which is also expected from previous analyses (see Section 1)
when the Delong test is applied to fitted values. The bottom row, where sample size is large, indicates that
the proposed test controls the FPR while maintaining a power advantage over Delong test. The proposed
test is based on asymptotics however, and for smaller sample sizes suffers from the presence of dependence
much as the exact test does.
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Figure 1: Power curves for multivariate Gaussian data.

9



Figure 2: Power curves for multivariate t data.
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4 Conclusion

We have developed a test for the difference in AUCs using elliptically contoured data. An important avenue
for further work is to improve the efficiency of the currently proposed estimator. It is known that the family
of elliptically contoured distributions admits adaptive estimators for any parameter that is a function of
the mean and variance and homogeneous of degree 0 in the variance, a class that includes the Mahalanobis
parameter used above. That is, it is theoretically possible to construct an estimator for any elliptically
contoured data that achieves the same asymptotic variance as an efficient estimator taking into account
the specific parametric form of the data. Such an estimator may improve the performance of the proposed
esetimator in smaller samples or with high dependency.
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