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Summary: Recently proposed methods leverage time-varying instrumental variables to draw
causal conclusions from longitudinal data in the presence of potentially time-varying un-
known confounders. While an effective proof of concept, the estimators requires specification
of several nuisance models, and are typically inconsistent when any of these specifications
fails to capture the data. Moreover, the estimators do not make efficient use of all available
data. Building on the work of Tchetgen Tchetgen et al. 2018, we present a multiply robust,
locally efficient estimator. We apply this estimator to marginal structural mean and Cox
model parameters.
Keywords: Causal inference, longitudinal data, instrumental variables.

Observational data are increasingly used to draw inferences and make decisions. While
controlled experiments remain the gold standard for inferring causal relationships, cost,
ethics, or expedience often compel analysts and decision-makers to rely on observational
data. Furthermore, the increasing size and richness of observational data being collected
invites analysis. Electronic health records, claims data, sensor data, and social media data
are examples of the massive amounts data being collected, typically in a time series. The
role of observational data as complementary to the traditional controlled experimental data
is increasingly recognized by regulatory bodies, private R&D departments, and has been
written into the federal US code (Li et al., 2021).

The central challenge when making decisions based on observational data is the possi-
bility of confounding, i.e., factors affecting both the choice of treatment and outcome under
study. A large toolbox has been developed over the last 40 years for drawing causal in-
ferences from longitudinal observational data on the assumption that all confounders are
available to the analyst. While not assuming treatment is randomized, these approaches still
assume that treatment is randomized conditional on a set of available data. This sequential
ramdonization assumption (SRA) may therefore be nearly as difficult to meet or nearly as
implausible as randomization. Nevertheless, reviews of the literature show that published
studies frequently rely on this assumption uncritically, leading to spurious inferences (Clare
et al., 2019; Kreif et al., 2013). Longitudinal observational data is particularly susceptible
to unknown confounding, due to the manifold complex pathways through which factors may
induce dependence between treatment assignment and the outcome.
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Instrumental variables are the standard technique for controlling unmeasured confound-
ing (Baiocchi et al., 2014; Martens et al., 2006). An IV may be viewed as a surrogate for a
treatment that possesses the crucial property of being random with respect to the outcome
under study. An IV therefore brings in the benefits of randomization for drawing causal
conclusions, in exchange for a possible loss of efficiency in relation to the surrogacy. While
instrumental variables have a long history in the field of economics and the social sciences,
their use has been largely limited to non-longitudinal data. Indeed, in an article from 2000,
James Robins, one of the founders of the field of longitudinal causal inference, expressed
doubt that time-varying IVs could ever be used to identify causal effects. Many of the core
applications motivating causal inference, such as longitudinal drug trials and cohort studies,
have thus been out of reach to IV methods.

Cui et al. (2023); Michael et al. (2023); Tchetgen Tchetgen et al. (2018) have recently
proposed tools to leverage time-varying instrumental variables to draw causal conclusions
from longitudinal data in the presence of potentially time-varying unknown confounders.
Specifically, Michael et al. (2023) uses IVs to identify a marginal structural mean model,
the most common model for obtaining the causal effect of a time-varying treatment on an
outcome. Cui et al. (2023) uses IVs to identify the parameters of a marginal structural Cox
model, the most common model for evaluating the causal effect of a time-varying treatment on
a censored failure time outcome. These identification results lead to naive estimators for the
MSM. While an effective proof of concept, the naive estimator suffers from inefficiency, non-
robustness, and unnecessary limitations on the data. These problems limit the widespread
deployment of IV MSM estimation.

1 Background/notation

We begin by providing background on MSMs. We are interested in the causal relationship
between a course of treatments A1, . . . , AT , on an outcome Y . Included among the data
is a process of covariates L1, . . . , LT . We denote by A the common sample space of the
treatments, and we initially assume this space is discrete. We adopt the potential outcomes
framework, which postulates potential outcomes Ya(ω), random variables indexed by treat-
ment levels a = (a1, . . . , aT ). The potential outcome Ya(ω) is interpreted as the response of
a unit ω if, possibly contrary to fact, treatment a were applied to ω. Potential outcomes
are only partially observed since not all units receive all treatments. What is observed is
YA(ω)(ω), the potential outcome of unit ω under the treatment A(ω) received by unit ω. We
use ⊥⊥ to denote statistical independence and Pn to denote expectation with respect to the
empirical distribution of the data. We use overbars to indicate the history of a quantity,
e.g., a = (a1, . . . , aT ).

A marginal structural mean model (“MSMM”) is a model on the marginal means of the
potential outcomes Ya, a ∈ AT (Robins, 1997). For example, the effect of a treatment regime
may be modeled as linear in the cumulative treatment taken,

E(Ya) = β0 + β1

T∑
t=0

at. (1)
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In this example, β ∈ R2 parameterizes the MSMM and encodes the incremental effect of
a unit of treatment. A link function can be introduced to accommodate binary or count
outcome variables, e.g., E(Ya) = (1 + exp(β0 + β1

∑T
t=0 at))

−1 for binary Y . In general we
write

E(Ya) = mβ(a) (2)

to describe an MSMM, where mβ : AT → R belongs to a family of functions parameterized
by finite-dimensional β. The model parameter β is the target of inference.

A marginal structural Cox model (“Cox MSM”) is a certain model on the hazard function
of the potential outcomes Ya, a ∈ AT ,

λYa = λ0(t) exp(m(at, t, β, V )). (3)

Here, λ0 is an unspecified baseline hazard function, V ∈ L(0) are baseline covariates, and
the function m satisfies m(0, t, β, V ) = 0 for all t, β, V . The target of inference as before is
β, a finite-dimensional parameter indexing m and, through m, the hazard function.

Since a MSM is a model on the incompletely observed potential outcomes Ya, there is no
guarantee that the observed data alone can pick out the parameter β of the data generating
process. That is, without further assumptions, the observed data may not uniquely identify
the MSM parameter. We describe here two identification results, one classical and the other
the subject of Cui et al. (2023); Michael et al. (2023). Both are formally the same: They
work by relating the law of the potential outcomes Ya to a moment condition on the observed
data (Y,A, Z, L),

E
(
h(A)

Y −mβ(A)

W

)
=
∑
a

E (h(a)(Ya −mβ(a))) = 0 (4)

for an MSMM, and

E

(∫
dN(t)

W

(
h(A)−

E
(
h(A) exp(m(A(t), t, β, V )){Y ≥ t}/W

)
E
(
exp(m(A(t), t, β, V )){Y ≥ t}/W

) ))
= 0 (5)

for a Cox MSM. The difference between the two lies in the choice of weights W and the
assumptions justifying their use. In both cases h is an arbitrary function on AT of the same
dimension as β, to be discussed further below. Whichever set of assumptions and weights one
relies on, the MSM parameter may be estimated as the solution to the estimating equation
obtained as the empirical form of (4):

Pn
(
h(A)

Y − µβ(A)

W

)
= 0 (6)

for an MSMM, and analogously for a Cox MSM. With the weights in hand, this estimation
is a weighted regression that may be carried out in many popular software packages.

The two sets of identification assumptions and associated weights are
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1. SRA MSM estimation. If one is willing to assume that all confounders have been
accounted for, (Robins, 1998, 1997) give the classical identification result for the MSM
parameter. Specifically, under the SRA and the positivity assumption,

Ya ⊥⊥ At | Lt, At−1, 1 ≤ t ≤ T (SRA) (7)

0 < fAt|At−1,Lt
(at | At−1, Lt) a.s., at ∈ A, 1 ≤ t ≤ T (positivity) (8)

the weights W in (4) may be chosen to be

W
(SRA)

= W
(SRA)

T =
T∏
t=1

W
(SRA)
t (9)

W
(SRA)
t = fAt|At−1,Lt

(At | At−1, Lt) 1 ≤ t ≤ T. (10)

SRA will hold if the cumulative observed data at each time point capture all systematic
associations between the treatment and outcome of interest. Positivity will hold when,
among all subpopulations defined by covariates Lt and a treatment regime At−1, t ≤ T ,
there are further subpopulations at each possible treatment level at ∈ A.

It is frequently impossible or imprudent to assume that there are no unmeasured confounders.
Instrumental variables provide a way to manage unknown confounding, rather than stipulat-
ing that none is present. Informally, an IV is a random variable associated with the treatment
of interest that has no association with the outcome of interest except as mediated by the
treatment. For example, a prescription randomly assigned to study subjects is orthogonal to
any pretreatment variables, including unobserved confounders, but would usually influence
whether the subject actually follows the prescription. Therefore the prescription may serve
as an IV for the treatment actually taken or not taken. More formally, a random variable is
an IV when it satisfies (i) (IV relevance) the IV Z must be associated with the treatment A;
(ii) (exclusion restriction) the IV Z may not be a direct cause of the treatment A; and (iii)
(IV independence) there are no unknown confounders of the relation between the IV Z and
outcome Y . Whereas SRA requires that the treatment of interest not share any unknown
confounders with the outcome, the IV approach allows the analyst to meet this requirement
by any other available quantity that may act as a surrogate for the treatment.

2. IV MSM estimation. Cui et al. (2023); Michael et al. (2023); Tchetgen Tchetgen
et al. (2018) establish that time-varying binary-valued IVs may be used to identify
MSM parameters. Besides straightforward longitudinal generalizations of standard IV
assumptions, the key assumption needed is Independent Compliance Type:

δt ⊥⊥ U t | At−1, Zt−1, Lt, 1 ≤ t ≤ T (11)

where δt = f
(
at|At−1, Zt−1, Zt = 1, Lt, U t

)
− f

(
at|At−1, Zt−1, Zt = 0, Lt, U t

)
(12)

The ICT assumption states that while U t may confound the causal effects of At,
no component of U t interacts with Zt in its additive effects on At. The name of the
assumption comes from the aforementioned design in which the IV Z is a doctor’s
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prescription and the treatment A is taking the prescribed medicine. A patient is
grouped into 1 of 4 compliance classes depending on whether the patient was or was
not prescribed the treatment, and whether the patient did or did not take the medicine.
The ICT assumption is that unknown confounders do not interact with compliance
class at any stratum of the population under consideration. The assumption will be
met if enough data on subjects is collected to capture all systematic differences in
compliance type. Under the ICT assumption and IV assumptions, the weights in (4)

may be chosen as W
(IV )

=
∏T

t=1W
(IV )
t with

W
(IV )
t = (−1)1−ZtfZt

(
Zt | Lt, At−1, Zt−1

)
δt
(
Lt, At−1, Zt−1

)
. (13)

2 Summary of results

We use instrumental variable to manage unmeasured confounding. Michael et al. (2023) and
Cui et al. (2023) present simple IV estimators for MSMM and Cox MSM parameters that are
not robust to misspecifications to nuisance models. That is, this estimator depends on several
unknown quantities that must be estimated from the data under parametric assumptions, and
if any of these parametric assumptions fails to be met, the resulting estimator is likely to be
inconsistent. Besides sensitivity to model misspecification, the naive estimator does not make
efficient use of the data. The notion of efficiency used here is drawn from semiparametric
theory, which provides benchmarks for efficiency not met by the naive estimator.

A multiply robust, locally efficient estimator mitigates these problems. Multiple robust-
ness is the property that the estimator remains asymptotically normal even when certain
of the nuisance models are misspecified. If it so happens that all nuisance models are cor-
rectly specified, the estimator achieves the semiparametric efficiency bound: Its asymptotic
variance is minimal among all regular asymptotically linear estimators subject to the IV
assumptions and MSM. The wide class of RAL estimators is of interest for benchmarking
purposes since these are the estimators known to be stable under small changes to the data
generating process (Bickel et al., 1993).

We build on Tchetgen Tchetgen et al. (2018) to obtain a multiply robust, locally efficient
IV MSM estimator. That technical report presents a multiply robust, locally efficient esti-
mator in the more general setting of marginal structural models. When the identification
conditions hold, the estimator may be obtained as the solution in β of

op(n
−1/2) = Pn

(
Dsm(h, β)

W
(IV )

)
−Pn

(
T∑
t=1

1

W
(IV )

t−1

(
(−1)1−Zt

f(Zt | Lt, At−1, Zt−1)

(
ψt(β)− ψ̃t(β)(At − E(At | At−1, Lt, Zt))

δt

)
− ψ̃t(β)

))

where

ψT (β) = E
(
Dsm(h, β)

δT

∣∣∣∣AT−1, LT , Zt

)
,
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for t = 1, . . . , T − 1,

ψt(β) = E
(
ψ̃t+1/δt | At−1, Lt, Zt

)
, (14)

and for t = 1, . . . , T,

ψ̃t(β) = E(ψt(β) | At−1, Lt, Zt−1). (15)

The estimating function Dsm(h, β) is, in the case of an MSMM,

Dsm(h, β) = h(A)(Y − µβ(A))

and, in the case of a Cox MSM,

Dsm(h, β) =

∫
dN(t)

(
h(A)−

Pn
(
h(A) exp(m(A(t), t, β, V )){Y ≥ t}

)
Pn
(
exp(m(A(t), t, β, V )){Y ≥ t}

) )
.

The complicated form taken by the estimating equation is one of the hurdles to be overcome
in this paper. In particular, the recursive form of the nuisance parameters ψt(β) and ψ̃t(β)
poses modeling and computational challenges. Despite the promises of multiple robustness
and local efficiency, to date no estimator has been developed taking advantage of this result.

For practical use, this estimator requires estimation of ψt(β), δ, fZt|Lt,At−1,Zt−1
, and εt =

E(At | At−1, Lt, Zt), t = 1, . . . , T . Theorem 1 argues that, under mild conditions, the solution
to the estimating equation (6) remains asymptotically normal whenever models for any of
the following 3 sets of quantities are correctly specified: (i) M1 : fZt|Lt,At−1,Zt−1

and δt, (ii)

M2 : fZt|Lt,At−1,Zt−1
and ψ̃t(β), (iii)M3 : ψ̃t(β), ψt(β), and E(At | At−1, Lt, Zt), t = 1, . . . , T .

That is, the estimator is asymptotically normal whenever the data generating process for the
nuisance terms lies in the unionM1 ∪M2 ∪M3. Building on results in Tchetgen Tchetgen
et al. (2018), Theorem 2 establishes that, when all 3 models are correctly specified, i.e., the
data generating process for the nuisance terms lies in M1 ∩M2 ∩M3, the solution to the
estimating equation (6) with a particular choice of h achieves the semiparametric efficiency
bound.

As a proof of concept, we consider a simple model where the covariates and treatment
are binary. One might encounter data appropriate to this model in a SMART study where
a binary or dichotomized baseline measure (e.g., early versus advanced disease, high versus
low CD4 count) informs treatment assignment (the IV) and is then tracked over a period of
time (the covariate process) at the end of which a final measurement is taken as the outcome.
When all the data is binary-valued the ψt(β) terms may be estimated nonparametrically;
parametric estimation of ψt, which presents certain challenges, will be discussed shortly. We
consider T = 2 time points.

Multiple Robustness. Table 1 gives the result of an examination of the multiple robustness
of the proposed estimator with a sample of size n = 1000. We test multiple robustness by
moderate misspecifications to the models for the 4 nuisance terms. An example of such
a misspecification is to model f(Zt | Lt, At−1, Zt−1) as bernoulli with success probability
expit(γ0 + γ1Lt) while sampling the data using a success probability expit(γ0 + γ′1Lt) for
γ1 6= γ′1. Thus the data generating process does not lie in M1 ∪M2. In each case, these
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misspecification naive estimator efficient estimator
fZ δ ψt ε bias SD MSE bias SD MSE
x 1.35 22.23 495.71 0.02 0.54 0.30

x -0.01 15.07 226.98 -0.08 2.33 5.44
x 0.35 17.40 302.70 -0.00 0.77 0.59

x x -0.03 5.82 33.89 -0.08 1.15 1.33
x 0.54 11.89 141.47 -0.03 0.98 0.96

Table 1: Pilot study: The performance of the naive and the proposed IV MSMM estimator
under misspecification to the models for nuisance parameters.

moderate misspecifications are enough to drive up the bias or variance of the naive estimator
to the point that it becomes impractical. The performance of the multiply robust estimator,
however, remains reasonable.

Local efficiency. When all nuisance models are correctly specified, the efficient estimator
achieves the semiparametric efficiency bound. Figure 1 describes the efficiency of the esti-
mator in this situation. In this pilot study, the figure shows that the MSE of the efficient
estimator is about 2/3 that of the naive estimator, across a range of sample sizes.

Figure 1: Pilot study: MSE of the naive and proposed IV MSMM estimator.

While this pilot study is encouraging, more realistic applications require consideration
of, at least, non-binary covariates; vectors of covariates; dependence between the IV at each
time step and past covariates; and direct dependence of the treatment on earlier time points
(i.e., a non-markov treatment process). With more complex data such as these, the nuisance
parameters such as ψt typically cannot be modeled nonparametrically due to the curse of
dimensionality and will require parametric specification. The main challenge here is that
the parametric models must be chosen so as to respect the recursive relationships (14,15).
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Many natural models, such as a logistic model for the treatment, are incompatible with the
integrations.

The problem of parametrizing mutually consistent models for time-varying parameters
is not specific to efficient IV estimation of MSM parameters. Recent work of Babino et al.
(2019), building on the foundational work of Robins (2000), addresses the issue in the setting
of MSMs under SRA. Next we propose a parametrization of the likelihood for the data that
implies a consistent sequence of models.
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A Proof of multiple robustness

Establish multiple robustness by showing that the estimating equation remains unbiased,

E

Dsm

W
∗
T

(i)

−
T∑
t=1

1

W
∗
t−1

(
(−1)1−Ztψ∗

f ∗(Zt | At−1, Zt−1, Lt)
− ψ̃∗t

)
(ii)

−
T∑
t=1

ε∗t ψ̃
∗
t

W
∗
t

(iii)

 = 0, (16)

though certain subsets of the starred quantities may not be the same as the corresponding
unstarred quantities. Specifically, the above holds whenever any one of the following hold:

1. W
∗
t = W t, i.e., f ∗(Zt | At−1, Zt−1, Lt) = f (Zt | At−1, Zt−1, Lt) and ∆∗t (At−1, Zt−1, Lt) =

∆t(At−1, Zt−1, Lt), t = 1, . . . , T.

2. f ∗(Zt | At−1, Zt−1, Lt) = f (Zt | At−1, Zt−1, Lt) and ψ̃∗t = ψ̃t, t = 1, . . . , T .

3. ψ∗ = ψ, ψ̃∗t = ψ̃t, and ε∗t = εt, i.e., E∗(At | At−1, Zt, Lt) = E(At | At−1, Zt, Lt),
t = 1, . . . , T .

This result implies that the MSM parameter β may typically be consistently estimated
using consistent estimators for the quantities in any one of the three above models.((we have
convergence in prob, need convergence in mean)) In the above, E∗, f ∗ does not denote a
type of expectation or density, and is just a notation for some substitute possibly random
quantity for the corresponding unstarred quantity. The following mild assumptions are made
on the starred quantities. For all t, 1 ≤ t ≤ T,

1. The starred quantities must be functions of the same sets of random variables as
the corresponding unstarred quantities. That is, ψ∗,W

∗
t , E

∗(At | At−1, Zt, Lt) ∈
σ(At−1, Zt, Lt), and f ∗(Zt | At−1, Zt−1, Lt), ψ̃

∗
t ,∆

∗
t (At−1, Zt−1, Lt) ∈ σ(At−1, Zt−1, Lt).

2. ψ̃∗t must be compatible with ψ∗ in the sense that ψ̃∗t = ψ∗|Zt=1 − ψ∗|Zt=0.

3. ε∗t and ∆∗t (At−1, Zt−1, Lt) are compatible in the sense that E∗(At | At−1, Zt, Lt)|Zt=1 −
E∗(At | At−1, Zt, Lt)|Zt=0 = ∆∗t (At−1, Zt−1, Lt), equivalently, E∗(At | At−1, Zt, Lt) =
E∗(At | At−1, Zt, Lt)|Zt=0 + Zt∆

∗
t (At−1, Zt−1, Lt).

4. W
∗
t is comptaible with f ∗(Zt | At−1, Zt−1, Lt) and ∆∗t (At−1, Zt−1, Lt) in the sense that

W
∗
t = (−1)1−Ztf ∗(Zt | At−1, Zt−1, Lt)∆

∗
t (At−1, Zt−1, Lt).

1. For the first model, consider the 3 terms in ((ref))

i. E
(
Dsm

W
∗
T

)
= E

(
Dsm

WT

)
= 0 by Theorem ((ref)) in ((JASA paper)).
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ii.

E
T∑
t=1

1

W
∗
t−1

(
(−1)1−Ztψ∗

f ∗(Zt | At−1, Zt−1, Lt)
− ψ̃∗t

)
(17)

=
T∑
t=1

E

(
1

W t−1
E

(
(−1)1−Ztψ∗

f ∗(Zt | At−1, Zt−1, Lt)
− ψ̃∗t | At−1, Zt−1, Lt

))
(18)

and by the assumed comptaibility of ψ∗ and ψ̃∗t .

E

(
(−1)1−Ztψ∗

f ∗(Zt | At−1, Zt−1, Lt)
− ψ̃∗t | At−1, Zt−1, Lt

)
= ψ̃∗t − ψ̃∗t = 0. (19)

iii.

E
T∑
t=1

ε∗t ψ̃
∗
t

W
∗
t

= E
T∑
t=1

ψ̃∗tE

(
ε∗t
W t

| At−1, Zt−1, Lt

)
. (20)

Writing ε∗t = At − E∗(At | At−1, Zt, Lt) = At − (E∗(At | At−1Zt−1, Zt = 0, Lt) +
Zt∆t(At−1, Zt−1, Lt),which holds by the assumed compatibility of ε∗t and ∆∗t (At−1, Zt−1, Lt),
the inner expectation is

E

(
ε∗t
W t

| At−1, Zt−1, Lt

)
(21)

= E

(
(−1)1−Zt(At − Zt∆t(At−1, Zt−1, Lt))

fzt∆t(At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

)
(22)

− E
(

E∗(At | At−1Zt−1, Zt = 0, Lt)

f (Zt | At−1, Zt−1, Lt)∆t(At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

)
. (23)

The first term is

1

∆t(At−1, Zt−1, Lt)

∑
zt∈{0,1}

(−1)1−zt(E(At | At−1Zt−1, Zt = zt, Lt)− zt∆t(At−1, Zt−1, Lt))

(24)

=
1

∆t(At−1, Zt−1, Lt)
(∆t(At−1, Zt−1, Lt)−∆t(At−1, Zt−1, Lt)) = 0. (25)

The second term is

E∗(At | At−1Zt−1, Zt = 0, Lt)

∆t(At−1, Zt−1, Lt)
E

(
(−1)1−Zt

f (Zt | At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

)
(26)

=
E∗(At | At−1Zt−1, Zt = 0, Lt)

∆t(At−1, Zt−1, Lt)
(1− 1) = 0. (27)
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2. For the second model, term (ii) vanishes as under the first model.

For terms (i) and (iii), using the definitions

ψ̃t = E

(
(−1)1−Ztψ

f (Zt | At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

)
(28)

ψ =
1

∆t(At−1, Zt−1, Lt)
E
(
ψ̃t+1 | At−1, Zt, Lt

)
(29)

form the recurrence for ψ̃t

ψ̃t∆t(At−1, Zt−1, Lt) = E

(−1)1−ZtE
(
ψ̃t+1 | At−1, Zt, Lt

)
f (Zt | At−1, Zt−1, Lt)

| At−1, Zt−1, Lt

 (30)

= E

(
(−1)1−Ztψ̃t+1

f (Zt | At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

)
. (31)

12



The sum in (iii) telescopes using this recurrence,

E

T∑
t=1

ε∗t ψ̃
∗
t

W
∗
t

= E
T∑
t=1

(−1)1−Zt
(At − E∗(At | At−1, Zt−1, Lt))ψ̃

∗
t

W
∗
t−1∆

∗
t (At−1, Zt−1, Lt)f (Zt | At−1, Zt−1, Lt)

(32)

= E
T∑
t=1

(−1)1−Zt
(At − E∗

(
At | At−1, Zt−1, Zt = 0, Lt

)
− Zt∆∗t (At−1, Zt−1, Lt))ψ̃

∗
t

W
∗
t−1∆

∗
t (At−1, Zt−1, Lt)f (Zt | At−1, Zt−1, Lt)

(33)

=
T∑
t=1

E

(
ψ̃t

W
∗
t−1∆

∗
t (At−1, Zt−1, Lt)

E

(
(−1)1−ZtAt

f (Zt | At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

))
(34)

−
T∑
t=1

E

(
ψ̃tE

∗ (At | At−1, Zt−1, Zt = 0, Lt
)

W
∗
t−1∆

∗
t (At−1, Zt−1, Lt)

E

(
(−1)1−Zt

f (Zt | At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

))
(35)

−
T∑
t=1

E

(
ψ̃t

W
∗
t−1

E

(
(−1)1−ZtZt

f (Zt | At−1, Zt−1, Lt)
| At−1, Zt−1, Lt

))
(36)

=
T∑
t=1

E

(
ψ̃t∆t(At−1, Zt−1, Lt)

W
∗
t−1∆

∗
t (At−1, Zt−1, Lt)

)
−

T∑
t=1

E

(
ψ̃t

W
∗
t−1

)
(37)

=
T∑
t=1

E

(
(−1)1−Ztψ̃t+1

W
∗
t−1∆

∗
t (At−1, Zt−1, Lt)f (Zt | At−1, Zt−1, Lt)

)
−

T∑
t=1

E

(
ψ̃t

W
∗
t−1

)
(38)

=
T∑
t=1

E

(
ψ̃t+1

W
∗
t

)
−

T∑
t=1

E

(
ψ̃t

W
∗
t−1

)
(39)

= E

(
ψ̃T+1

W
∗
T

)
− E

(
ψ̃0

W
∗
0

)
(40)

= E

(
ψ̃T+1

W
∗
T

)
= E

(
Dsm

W
∗
T

)
.

(41)

Therefore, the difference of terms (i) and (iii) is 0.

3. For the third model, ε∗t = εt implies

E

T∑
t=1

ε∗t ψ̃
∗
t

W
∗
t

= E

T∑
t=1

ψ̃∗t
W
∗
t

E
(
ε∗t | At−1, Zt, Lt

)
= 0. (42)

The difference of terms (i) and (ii) is

13



E

(
Dsm

W
∗
T

−
T∑
t=1

1

W
∗
t−1

(
(−1)1−Ztψ∗

f ∗(Zt | At−1, Zt−1, Lt)
− ψ̃∗t

))
(43)

= E

(
Dsm

W
∗
T

−
T∑
t=1

ψ∗∆t(At−1, Zt−1, Lt)

W
∗
t

+
T∑
t=1

ψ̃t
W
∗
t−1

)
(44)

= E

(
Dsm

W
∗
T

−
T∑
t=1

E(ψ̃t+1 | At−1, Zt, Lt)

W
∗
t

+
T∑
t=1

ψ̃t
W
∗
t−1

)
(45)

= E

(
Dsm

W
∗
T

−
T∑
t=1

ψ̃t+1

W
∗
t

+
T∑
t=1

ψ̃t
W
∗
t−1

)
(46)

= E

(
Dsm

W
∗
T

=
Dsm

W
∗
T

−
T−1∑
t=1

ψ̃t+1

W
∗
t

+
T∑
t=1

ψ̃t
W
∗
t−1

)
(47)

= E

(
ψ̃t
W
∗
0

)
= 0. (48)

B Proof of semiparametric efficiency

((write out differentiation wrt parametric sub-models))
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