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Summary: It is often needed to perform inference on a population proportion based on
dependent data. For example, an employer may want a confidence interval for the proportion
of man-hours lost due to illness within a given time-frame, based on employee’s attendance
records. We frame this problem as carrying out inference on a linear combination of a
multinomial parameter based on a single observation. The conventional likelihood-based
approach relies on a large sample approximation and may have a poor performance when the
multinomial probability vector lies close to the boundary of the unit simplex, the parameter
space of the probability vector. On the other hand, the validity of our method is always
assured since it is based on the inversion of exact tests. We find substantial improvements
in its robustness over the conventional approach with small sample sizes, particularly when
the multinomial parameter is sparse. We illustrate our method by applying it to analyze
data on the impact of air pollution data on breathing difficulty.
Keywords: Binary outcomes; Longitudinal data; Rare events.

1 Introduction

We consider the problem of forming a confidence interval for a linear combination of a

multinomial parameter based on a single observation X. That is, given an observation X

distributed as multinomial with count n and probabilities p = (p1, . . . , pm), we describe

methods for obtaining a confidence interval (CI) for

θ0 = ctp =
m∑
i=1

cipi. (1)

1



where c = (c1, . . . , cm) are given known constants. Our CI is exact in the sense that it is

based on a test statistic the distribution of which is known up to easily controlled monte

carlo error, rather than asymptotically or otherwise approximated. An exact CI is important

for applications involving rare events, small sample sizes, or both these conditions.

1.1 Motivating example

As a motivating example, suppose a researcher from a hospital or insurance company is

interested in the cumulative incidence rate of an event within a time window in a population

of interest. For example, patients are given a preliminary screening test at regular time

interval and there is health-related or economic cost associated with each positive test result.

Then the total cost is proportional to the cumulative incidence rate. The data are modeled

as n vectors of length m− 1,m > 1, consisting of binary values,

(X11, X12, . . . , X1(m−1)), (X21, X22, . . . , X2(m−1)), . . . , (Xn1, Xn2, . . . , Xn(m−1)), Xij ∈ {0, 1}.

The parameter targeted for inference is

θ0 = E

(
1

n(m− 1)

n∑
i=1

m−1∑
j=1

Xij

)
.

The dependence structure among the repeated observations (Xi1, Xi2, . . . , Xi(m−1)) is left

unspecified while the n vectors are assumed identically independently distributed (IID),

such as one might obtain by administering the tests to randomly selected subjects from a

population. Since each Xij is 0 or 1, the sums
∑m−1

j=1 Xij, i = 1, . . . , n, are IID random

variables each taking an integral value in {0, 1, . . . ,m− 1}. Viewing 0, 1, . . . ,m − 1, as m

categories, we identify the value of
∑m−1

j=1 Xij as a choice from these m categories.Therefore,∑m−1
j=1 Xij, i = 1, · · · , n are IID, and their sum is multinomial with parameters n and p0,
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where the ith component of p0 is

p0i = P

(
m−1∑
j=1

X1j = i− 1

)
, i = 1, . . . ,m.

It follows that

θ =
m∑
i=1

(i− 1)

(m− 1)
p0i.

1.2 Literature

Many studies in the health sciences regularly measure a rarely occurring event over time.

A standard method of analysis is generalized estimating equations, and variants that take

into account the rarity of the event (Schaefer, 1983; Cordeiro and McCullagh, 1991; Bull

et al., 1997; Cordeiro and Cribari-Neto, 1998; Leung and Wang, 1998; Anderson and Blair,

1982; Self and Liang, 1987). These methods are mainly intended to ascertain the association

between the events and available covariates, which in turn usually requires imposing modeling

assumptions. As we are interested only in prevalence, we can use non-parametric methods.

There is also a long line of research into exact tests and CIs for contingency table data.

Overviews are given in Mehta (1994); Agresti (2001). These exact methods are typically

based on test inversion like ours. These methods, however, are not designed for dependent

outcomes, as our data require.

The remainder of the paper is organized as follows. In Section 2 we describe the construc-

tion of the proposed CI, first from a theoretical standpoint in Section 2.1, then considering

practical aspects in Section 2.2. In Section 3 we examine the coverage and power of the

proposed CI using synthetic data, comparing it to a standard CI. In Section 4 we apply the

proposed method to form a CI for the prevalence of wheezing in a population of children.

We conclude in Section 5 with suggestions for future research. Software implementing the

proposed method and the routines used in the simulation section of the paper are publicly

available at the website of the corresponding author.
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2 Method

The general problem is forming a CI for a real function of a multinomial parameter vector.

One solution is to find a level 1− α confidence region for the multinomial parameter vector

and transform it to obtain a level 1 − α CI for the function of the multinomial parameter

vector. Since a multinomial parameter is a probability mass function, this solution involves

a type of nonparametric density estimation. We take advantage of the assumption that the

function is a linear combination in constructing the CI.

2.1 Inference on a linear combination of the multinomial param-

eter by test inversion

Let X be an observation from the multinomial distribution with sample size n and parameter

p0, i.e., X ∼ MN(n,p0). Let c be a vector of length m, not necessarily c0 = (0, . . . ,m −

1)t/(m − 1) as above, though we continue to assume the components of c are nonnegative.

The goal is to construct a valid CI for θ0 = ctp0 based on X.

One CI is given by maximum likelihood estimator (MLE) of p0, p̂ = X/n. The MLE of

θ0 is ctp̂, distribution of which can be approximated by

N

(
θ0,

1

n
ct(diag(p)− ppt)c

)
.

Its variance may be approximated by

1

n
σ̂2 =

1

n
ct(diag(p̂)− p̂p̂t)c.

Therefore, a Wald-type 95% CI for θ0 can be constructed as

[
ctp̂− 1.96√

n
σ̂, ctp̂ +

1.96√
n
σ̂

]
.
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One drawback of this CI is that it need not lie in the parameter space for θ. For example, for

c = c0, θ is a proportion but the CI need not lie within [0, 1]. Another drawback is that for

a given finite sample size, the coverage of this CI deteriorates as the multinomial parameter

p0 approaches the boundary of the parameter space, the probability simplex in R
m. We

therefore look for a more reliable CI.

We may obtain an exact CI by inverting an exact hypothesis test. Let T = T (X,p) be

a function of the data X and a parameter value p. Choices of T (·) are discussed below. A

level α test of the null that X ∼MN(n,p) rejects for large values of T , i.e., T (x0,p) ≥ tp,α,

where x0 is the observed realization of X, tp,α is the 1 − α quantile of T (X,p), where

X ∼MN(n,p). A valid level α test of the composite null that

H0(θ) : p0 ∈ Ω(θ) = {p ∈ ∆m−1
+ : ctp = θ},

rejects when

inf
p∈Ωθ
{T (x0,p)− tp,α} > 0, (2)

where ∆m−1
+ = {p = (p1, p2, · · · , pm)t ∈ Rm | 1tp = 1, pi ≥ 0} is the probability simplex in

R
m and 1 is the column vector consisting of all ones. Then, the set of parameters θ at which

the test fails to reject,

CI(x0) =

{
θ : inf

p∈Ω(θ)
[T (x0,p)− tp,α] ≤ 0

}
, (3)
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contains θ0 with a probability ≥ 1− α. It is because

P (θ0 ∈ CI(X))

= P

(
inf

p∈Ω(θ0)
[T (X0,p)− tp,α] ≤ 0

)
≥ P (T (X0,p0) ≤ tp0,α) , since p0 ∈ Ω(θ0)

≥ 1− α.

The set CI(x0) may therefore serve as a level 1−α CI for θ0. Another perspective is to view

Ωp(x0) = {p | T (x0,p) < tp,α}

as a 100(1−α)% confidence region for the probability vector p0 and CI(x0) as its projection

onto ctp :

CI(x0) =

[
inf

p∈Ωp(x0)
ctp, sup

p∈Ωp(x0)

ctp

]
.

Computing the quantiles tp,α requires the distribution of the test statistic T (X,p), where

X ∼MN(n,p), whose analytic form is often complex. In such cases, the distribution may be

approximated, to arbitrary accuracy, by simulation. As the quantiles are then only computed

at a finite number of select values p, the minimization of T (x0,p) − tp,α over the set Ω(θ)

in (3) is in turn approximated by taking the minimum over a grid on Ω(θ). To construct

the CI for θ0, one needs to repeat this minimization for a set of θ. Further details on the

algorithm are given below. This CI is exact, i.e., its mean coverage no smaller than the

nominal coverage, subject to provisos:

1. There is monte carlo error, which may be reduced arbitrarily by increasing the tuning

parameters: The numbers nθ and np of points θ and p ∈ Ωθ selected, and the size B

of the empirical distribution used in computing the quantiles tp,α.

2. The null hypothesis H0 : p0 ∈ Ω(θ) is a composite null hypothesis, so that the test
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statistic on which the CI is based is typically conservative. That is, the null consists

of multiple ps and the corresponding distributions of test statistics and (2) leads to

the least favorable p-value. This conservativeness is part of the definition of a p-

value for a composite null, and, due to the equivalence of CIs and hypothesis testing,

unavoidable. The degree of conservativeness depends on the gap between the largest

and smallest p-values for different ps with the same ctp value, in turn depending on

how robust the distribution of the test statistic is to the value of p. If the distribution

is approximately pivotal, i.e., independent of p, then the result is less conservative.

In simulations below, using test statistics suggested below, the effect is to inflate the

coverage by about 1 − 3%. See Figure 2 for an illustration, where, among the values

p0 ∈ Ω(θ), the p-values near the boundary of the simplex are larger.

3. Discreteness: There are mn possible values for X sampled as multinomial of size n

with m categories, so at most mn possible values for a test statistic T (X,p). Still

fewer values may be observed when p is close to the boundary of the simplex ∆m−1
+ ,

where some categories are rarely observed. There are then at most mn + 1 possible

values for a p-value. The nominal level of the test may not be among these p-values,

in which case the p-value obtained under (2) will be larger than the nominal level.

This issue may be addressed by introducing randomness to the test statistic, though in

practice doing so has been described as “unacceptable,” the preference being to specify

p-value cutoffs that lie among those made available by the data (Agresti, 2003).

The first point above is that the CI should have coverage equal or exceeding the nominal

level up to monte carlo error, while the second and third show that the coverage may be

strictly larger than the nominal level.

2.2 Algorithm

We propose the following algorithm for forming a CI for θ0 = ctp0 based on test inversion.
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1. Select θ1, . . . , θnθ , nθ ≥ 1, in the interval [mini ci,maxi ci]. The selection may be deter-

ministic or sampled from a continuous distribution on the interval.

2. At each θ among θ1, . . . , θnθ :

(a) Select p1, . . . ,pnp , from Ω(θ) = {p ∈ Rm : ctp = θ} ∩ ∆m−1
+ . The number

np = np(θ) may depend on θ value, and the distribution of the points may reflect

prior knowledge or interests. Methods for obtaining the points in this intersection

are discussed below.

(b) At each p among p1, . . . ,pnp :

i. Sample X∗1, . . . ,X
∗
B ∼MN(n,p)

ii. Set

q̂(p) =
1

B

B∑
i=1

I{T (X∗i ,p) ≥ T (x0,p)},

an estimate of the p-value of the observed data at p, where I{·} is an indicator

function.

(c) Set q̂(θ) = maxi q̂(pi), an estimate of the p-value of the observed data at θ. This

estimate is conservative as the maximum of q̂(pi) is used to estimate the maximum

of q(pi) = E{q̂(pi)}. In practice this conservativeness may be rendered negligible

by ensuring the tuning parameter B is big relative to np.

3. Take ĈI(X0) to be the range of {θi, 1 ≤ i ≤ nθ : q̂(θi) > α}, an approximate of an

exact level 1−α CI for θ0, where the approximation is in the sense discussed in Section

2.1.

In the following, we will discuss the operational details of (a), (b), (c) in this algorithm.

2.2.1 Details for (a): Sampling on {ctp = 1} ∩∆m−1
+

The key step of the algorithm is to sample a sufficient number of “representatives” from

{p ∈ R
m | ctp = θ} ∩ ∆m−1

+ to capture the range of possible values of the probability
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vector implied by the composite null H0(θ). A simple approach is to sample on an ambient

space where it is easy to generate samples, such as the probability simplex, and reject those

samples that do not lie in the intersection, perhaps after projecting onto the intersection.

The difficulty in this approach is that typically there are values θ for which the intersection

{p ∈ Rm | ctp = θ} ∩∆m−1
+ has volume that is an arbitrarily small fraction of the ambient

space, leading the rejection probability to approach 1. In this section, we describe two

methods for directly obtaining points in {p ∈ Rm : ctp = θ} ∩ ∆m−1
+ , the intersection of a

hyperplane with the probability simplex in Rm. Assume for the moment that θ 6= 0. Fixing

θ and renaming c/θ as c, we rewrite the intersection as

Ω(1) = {p ∈ Rm : ctp = 1} ∩∆m−1
+ = {p ∈ Rm : ctp = 1

tp = 1, pi ≥ 0}. (4)

We first describe a fast method that samples non-uniformly on S, then a slower method that

samples uniformly.

• Approach 1.

Up to a constant factor, points in Ω(1) satisfy (c − 1)tp = 0. Therefore a simple

method is

– Let d = c − 1 = (d1, · · · , dm)t and I+ = {i | di > 0} and I− = {i | di ≤ 0}

denote the indices of the nonnegative and negative elements of d, respectively.

Assuming that S is non-empty, the I− is non-empty. Sample u = (u1, · · · , um)t

from a continuous distribution with a support on the unit cube [0, 1]m, and let

p̃ = (p̃1, · · · , p̃m)t, where

p̃j =


uj, if j ∈ I+

−uj
∑
k∈I+

dkuk∑
k∈I−

dkuk
, if j ∈ I−

.

Then, dtp̃ = 0, for p̃ ∈ Rm
+ .
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– Normalize the sampled p̃

p̃←− p̃

1tp̃

such that ctp̃ = 1
tp̃ = 1.

This sampling approach involves only simple calculation and fast. A drawback of this

sampling approach is that the resulting p̃ does not uniformly distributed over S.

• Approach 2.

The intersection of Ω(1) is a convex polytope in Rm
+ , i.e., the convex hull of a finite

set of vectors {v1, . . . ,vk} ⊂ Rm
+ . If these vertices are available, we may sample

w = (w1, · · · , wk)t from the simplex ∆k−1
+ and apply a linear transformation

p̃←
k∑
i=1

wkvk,

to map the sample onto Ω(1). If the initial sample p̃ is sampled uniformly on the

simplex, whether stochstically or deterministically, then, since non-degenerate linear

transformations preserve uniformity (e.g., Devroye (2006)), the image will be uni-

formly distributed on Ω(1). Other sampling schemes on the probability simplex such

as a Dirichlet may be used to reflect prior knowledge about the location of the true

parameter. This approach requires the vertices {v1, . . . ,vk}, which is equivalent to

solving a linear programming problem. Avis and Fukuda (1991) give an algorithm

that runs in time on the order of km. For a natural number k A grid of
(
k=k+m−1

m−1

)
points w1, . . . , wk, partitioning the simplex into identical small simplices is given by

P =

{
k
−1
z | z = (z1, · · · , zm)t,

m∑
i=1

zi = k, zi ∈ {0, 1, · · · ,m}, 1 ≤ i ≤ m

}
.
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For example, when (k,m) = (4, 3), it is not difficult to see that

P =




0

0

1

 ,


0

1/4

3/4

 ,


1/4

0

3/4

 ,


0

1/2

1/2

 ,


1/2

0

1/2

 ,


1/4

1/4

1/2

 ,


0

3/4

1/4

 ,


3/4

0

1/4

 ,


1/4

1/2

1/4

 ,


1/2

1/4

1/4

 ,


0/4

1

0

 ,


1/4

3/4

0

 ,


1/2

1/2

0

 ,


3/4

1/4

0

 ,


1

0

0


 .

The value k controls the density of samples on the probability simplex.

When θ = 0, the set Ω(θ) is a lower-dimensional standard probability simplex. Let m′

denote the number of zeros among the entries of c. If all entries are positive then the

intersection is empty, as the components of c have been assumed to be nonnegative.

When c0 = (0, . . . ,m−1)t/(m−1) is the vector discussed in motivating example, or any

other choice of c with a single 0, the intersection consists of a single point. Generally,

the intersection is the probability simplex ∆m̃−1
+ embedded in the m̃ − 1-dimensional

subspace of Rm̃ given by the zero entries of c. Sampling on a standard probability

simplex may be carried out deterministically as described above. Alternatively, random

sampling can be realized from the Dirichlet distribution.

Figure 3 illustrates these sampling methods in R3.

2.2.2 Details for (b): The choice of the test statistic

Any choice of the test statistic T should, subject to monte carlo error, produce CIs with

coverage equal to or exceeding the nominal level. However, some choices will offer narrower

intervals. One choice is the studentized observation, centered at the test null,

T1(X,p) =
|ctp̂− ctp|√

ct(diag(p̂)− p̂p̂t)c
, p̂ =

X

n
.
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One drawback of this statistic is that the denominator may be very small or even vanish,

leading to poor power. The denominator is especially likely to vanish near the boundary or

when the multinomial count n is low. This difficulty may be addressed by a test statistic

that shrinks the data toward the center of the simplex,

T1(X,p) =
|ctp̂− ctp|√

ctΣ̂1c

where Σ̂1 = diag(p)−ppt, p = X+m−1

n+1
. Power against alternatives near the boundaries may

be achieved by regularizing this test statistic,

T2(X,p) =
(ctp̂− ctp)2

ctΣ̂1c
+ λ(p̂− p)tΣ̂−1

1 (p̂− p),

where Σ̂−1
1 in the second term is a generalized inverse of Σ̂1, and λ > 0 is a tuning parameter

selected a priori.

2.2.3 Details for (c): Coordinating tuning parameters

The sample size of the empirical distribution at each parameter p is an additional tuning

parameter. For a given θ, let p1, . . . ,pnp be the points sampled in the cross-section Ω(θ). Let

q1 = q(p1), . . . , qnp = q(pnp) denote the associated p-values, obtained as in step (b), If the

p-values q(p) depend continuously on the points p, and if as np →∞ the points p1, . . . ,pnp

become dense in the intersection Sθ, such as through sampling from a continuous distribution

in the stochastic approaches or increasing the grid density in a deterministic approach, then

max
1≤i≤np

q(pi)→ sup
p∈Sθ

q(p)

as np → ∞. At the same time, the fast convergence of the empirical to true CDF controls

the error in approximating q(p) via its empirical counterpart q̂(p) = 1− F̂T (X,p) {T (x0,p)},

where F̂T (X,p) is the empirical CDF based on a sample of size B of the test statistic at p.
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The Dvoretsky-Kiefer-Wolfovitz inequality gives a universal constant C such that

P (| max
1≤i≤np

q̂(pi)− max
1≤i≤np

q(pi)| > ε) ≤ P (∪np

i=1{|q̂(pi)− q(pi)| > ε})

≤
np∑
i=1

P (|q̂(pi)− q(p)i| > ε)

≤ npC exp(−2Bε2).

The last expression → 0 when B−1 log np = o(1). So to ensure convergence of the algorithm

it is sufficient to have, for example, the number of monte carlo samples B be of the same

order as the number of points p1, . . . ,pnp , sampled in the intersections Ω(θ) for all chosen θ.

3 Simulation

We use simulated data to verify the coverage of the approximate exact CI and compare it to

the CI obtained using the MLE. The dimension of the multinomial parameter is m = 4, as

with the data discussed in Section 4. In the first set of simulation, the multinomial parameter

p underlying the estimand θ = ctp is of the form (δ, (1− δ)/3, (1− δ)/3, (1− δ)/3)′, where

δ ranges between 0, the boundary of the probability simplex, and 1/4, where the parameter

is balanced. The coefficient vector is c = (0, 1/3, 2/3, 1)t, the same choice considered in the

motivating example in Section 1. In the second set of simulation, the multinomial probability

vector p = (1 − δ − δ2 − δ3, δ, δ2, δ3), where δ ranges between 0 and 1/2. The sample size

considered in the simulation study are n = 10, 30, 50.

Results based on 1000 simulations are summarized in Figure 1a and Figure 1b. The

observed coverage of the CIs are plotted against the distance of p from the boundary of

the probability simplex. The CI based on the MLE falls below the nominal rate, worse

as the sample size decreases or as the true probability vector is nearer the boundary of

the probability simplex. The proposed CI maintains the proper coverage level: remaining

consistently 1-2% above the nominal rate. This gap is expected from the composite nature

13



of the null hypothesis, as discussed above. There is a slight improvement in efficiency in the

using the slower method, vertex enumeration, with the proposed CI.

To further understand the behavior of the CI, an approximation to the power surface

of the hypothesis test on which the CI is based is given in Figure 2. The dimension of the

parameter is m = 3. Contours are given for the observed rejection rate based on the p-value

q̂(p) at values p = (p1, p2) corresponding to probability vector (p1, p2, 1−p1−p2)t ∈ ∆2. The

true multinomial parameter (p1, p2) is marked as well as the line corresponding to the true

value of the estimand, θ = ct0p. Following this line to the edge of the simplex, the rejection

rate decreases, revealing a cause of the intrinsic conservativeness of the CI for the composite

null discussed in Section 2.1.

4 Data Analysis

We consider the prevalence of wheezing observed in a population of repeatedly tested chil-

dren. This parameter is of interest when the presence of wheezing requires a follow-up

procedure and the aggregate resources for the follow-ups is to be estimated. The study

consists of 537 children who were checked for wheezing annually in ages 7–10, giving 4 re-

peated measurements. The observed prevalence of days with wheezing is 0.152. The data is

described further in Fitzmaurice and Laird (1993).

An exact 95% CI using the proposed method is (0.130, 0.181). The CI based on large

sample approximation to the distribution of simple MLE is (0.130, 0.174). The length of

the proposed CI is 0.055 compared to 0.043 for the MLE. Figure 4 gives the p-values of the

hypothesis test inverted to form the proposed CI. The CI given here corresponds to values

θ for which the p-value exceed the level α = .05, indicated by a horizontal line.
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5 Discussion

We have outlined a procedure for constructing exact CI of a population prevalence based

on repeated binary outcome measurements. In doing so we solved a more general problem,

approximating an exact CI of a given linear combination of a multinomial parameter cTp

based on a single observation X ∼MN(n,p).

Several extensions of the proposed method suggest themselves. First, the method de-

scribed here can in principle be extended to form a confidence region for several prevalences

θ1, θ2, . . .. Such a region is useful for inference on, e.g., contrasts for the prevalence of wheez-

ing under different experimental conditions. Such an extension would require evaluating

the exact distribution of test statistics with the true probability vectors over a grid on the

cartesian product of several simplices. Thus, the computational complexity of a direct ap-

plication of the proposed method would grow exponentially in the number of prevalences

θi under consideration. However, for the common case of two prevalences, where a CI for

θ1 − θ2 is sought, the computational burden is manageable. Second, a more complicated

extension is to allow the number m of observations per patient to be random. The problem

may be reformulated as a missing data problem and solved according to the assumption on

the missing mechanism.
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posed method and the MLE, when p = (δ, (1−δ)/3, (1−δ)/3, (1−δ)/3), where
δ ∈ [0, 1/4]

(b) The empirical coverage probabilities of nominal 95% CIs based on the
proposed method and the MLE, when p = (1 − δ − δ2 − δ3, δ, δ2, δ3), where
δ ∈ [0, 1/2].
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Figure 2: Power surface for m = 3. The line {p : ct0p = θ} gives the p values for the true θ.
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(a) (b) (c)

Figure 3: Sampling methods: (a) fast, non-uniform, (b) vertex enumeration using a deter-
ministic choice of points, (c) vertex enumeration using a dirichlet distribution with increased
concentration near the edges.

Figure 4: Air pollution data. P-values for the null hypothesis that the observed data follows
a distribution in θ, for a grid of θ values.
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