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Abstract: We consider two generalizations of the area under the receiving operating char-
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1 Introduction

The AUC is a widely used measure of how well a scalar predictor discriminates between

two outcomes. As a population parameter, the AUC is the probability that the value of a

randomly sampled predictor from one of the outcome classes is less than an independently

sampled predictor from the other outcome class. There are several ways to generalize the

AUC to accommodate clustered data. What we refer to as the “population AUC” appears

to be the most commonly studied. The population AUC evaluates the predictor’s typical

effect on an entire population, as further discussed below.

While the population AUC is an important part of understanding the usefulness of a

predictor, the medical field has lately focused on personalizing treatment. For example, in

2018 the National Academy of Medicine concluded: “The individuality of the patient should

be at the core of every treatment decision. One-size-fits-all approaches to treating medical
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conditions are inadequate; instead, treatments should be tailored to individuals based on

heterogeneity of clinical characteristics and their personal preferences.”

We examine a “personalized AUC” in conjunction with the population AUC. These

two evaluations may give different accounts of the usefulness of a marker. In the extreme

case, the phenomenon known as Simpson’s paradox may occur: The personalized AUC may

be nearly uninformative while the population AUC is nearly perfectly predictive, or vice

versa. Modern accounts of Simpson’s paradox, working in the framework of causal inference,

delineate situations in which the personalized AUC is appropriate, and other situations in

which the population AUC is appropriate.

Previous Literature. Obuchowski (1997) proposes a nonparametric, asymptotic esti-

mator for the variance of an estimator for the population AUC. We give an alternate deriva-

tion here. We also clarify the statistical model and target of inference. Rosner and Grove

(1999) give a formula for the finite-sample variance under certain distributional assump-

tions. Lee and Dehling (2005) discuss the asymptotic behavior of generalized U-statistics

with clustered data, a class which includes the estimator for the population AUC discussed

in Obuchowski (1997) and below. Liu et al. (2005) suggest a bootstrap approach, provided

the data follow a generalized linear model. Toledano (2003) summarizes techniques in use for

analyzing clustered ROC curves. Pearl (2014) gives an overview of Simpson’s paradox, an

effect illustrated by the examples in Section 3 below, from the standpoint of causal inference.

Michael et al. (2019) analyzes population and personalized versions of the ROC curve which

may, in principle, be used to obtain estimates of the population and personalized AUCs

discussed here under certain distributional assumptions. The analysis here is nonparamet-

ric and further avoids the inefficiency introduced by first estimating the entire ROC curve,

which may not be feasible for many smaller data sets.

Organization of the article. In Section 2 we introduce the AUC and the two general-

izations to clustered data considered here, the population and personalized AUCs. In Section

3 we discuss several examples of data-generating processes that highlight the differences be-
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tween the two AUCs. In Section 4 we describe two results available under the assumption

of independence between the cluster sizes and the values of the predictor of interest. In

Section 5 we give the asymptotic joint distribution of estimators for the two AUCs. The

performance of these estimators are then analyzed using synthetic data generated under two

models in Section 6. Section 7 contains an application of the methods to data on urban

policing patterns. In Section 8 we conclude and give directions for future work. Software

implementing the methods used in the paper and code for replicating the tables and figures

are publicly available at the first author’s website.

2 Setting and Notation

Let ψ : R2 → R denote the function (x, y) 7→ {x < y} + 1
2
{x = y}, using {·} to denote the

indicator function. Given independent draws X and Y from two distributions FX and FY ,

the AUC is defined as

θ = E(ψ(X, Y )) = P (X < Y ) +
1

2
P (X = Y ).

Given samples X1, X2, . . . , XM , IID as FX and Y1, Y2, . . . , YN , IID as FY , an unbiased esti-

mator of the AUC of FX and FY is

1

MN

M∑
i=1

N∑
j=1

ψ(Xi, Yj).

The function ψ is referred to as the “kernel.” The AUC is often used to evaluate how

effectively the data distinguish the two distributions. The AUC is close to 1/2 when the

distinction is poor, and equals 1/2 in the extreme case that FX = FY . The AUC is close to

1 when the distinction is better. In this extreme, there is a number c ∈ R such that always

X < c and Y > c, and then θ = 1. We informally refer to the two classes given by the two

distributions as “control” and “case,” and the scalar predictor as “marker.” Switching the
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observations designated “control” and “case” reflects the AUC across 1/2, AUC 7→ 1−AUC,

so |AUC − 1
2
| is often of greater interest than the AUC itself.

We extend the AUC to accommodate 1) vectors of case and control observations and 2)

dependence between case and control observations. Examples of data of this type are:

1. The predictors are longitudinal measurements of tumor antigens (CEA, CA15-3, TPS),

and the outcomes are progression or non-progression of breast cancer (Emir et al.,

2000).

2. The predictors are longitudinal measurements of levels of vascular enothelial growth

factor and a soluble fragment of Cytokeratin 19, and the outcomes are progression or

non-progression of non-small cell lung cancer (Wu and Wang, 2011).

3. The predictors are longitudinal measurements of an HIV positive patient’s CD4 counts,

and the outcome is “blip” status, a binary measurement representing a transient spike

in viral load (Michael et al., 2019).

Let (X, Y,M,N) be a random vector with joint distribution P such that X and Y are

sequences and M and N are counting numbers.

(X, Y,M,N) ∼ P

X = (X1, X2, . . .) ∈ RN, Y = (Y1, Y2, . . .) ∈ RN

M,N ∈ 1, 2, 3, . . . , E(M) <∞, E(N) <∞.

(1)

Informally, we regard X and Y as vectors of length M and N , ignoring the rest of the

sequences. The formulation (1) lets us avoid working with vectors of variable length.

Extend the AUC kernel ψ(·, ·) to vector arguments as

ψ(x, y) = ψ((x1, . . . , xm), (y1, . . . , yn)) =
m∑
i=1

n∑
j=1

(
{xi < yj}+

1

2
{xi = yj}

)
. (2)
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We define the personalized AUC as

θ11(P ) = E

(
ψ(X, Y )

MN

)
. (3)

With (X1, Y1,M1, N1) and (X2, Y2,M2, N2), being two independent draws from P , we define

the population AUC as

θ12(P ) =
Eψ(X1, Y2)

E(M1)E(N2)

(X1, Y1,M1, N1), (X2, Y2,M2, N2)
IID∼ P.

(4)

The personalized AUC may be undefined if M or N can take the value 0 with positive

probability, which is the reason for restricting them to counting numbers. The population

AUC may still be well-defined and some analyses do allow M = 0 or N = 0 (Obuchowski,

1997). In applications where M = 0 or N = 0 is possible, our analysis is therefore conditional

on M > 0, N > 0, a sub-population in which all clusters have at least 1 case and 1 control

observation.

For estimation, suppose a sample is given,

(X1, Y1,M1, N1), . . . , (XI , YI ,MI , NI)
IID∼ P.

An unbiased estimator of θ11 is

θ̂11 =
1

I

I∑
i=1

ψ(Xi, Yi)

MiNi

.

A consistent estimator of θ12 is

θ̂12 =

∑∑
i 6=j ψ(Xi, Yj)∑
iMi

∑
iNi

. (5)

Letting PI denote the empirical distribution of the sample, θ̂11 = θ11(PI), while θ̂12 =
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θ12(PI) +O(I) (the estimator θ12(PI) is discussed at (7) below).

Both the population and personalized AUC, like the usual AUC, are bounded between 0

and 1, 1
2

represents poor discrimination, and distance from 1
2

represents increasing discrim-

ination. However, they describe distinct measures of discrimination. It is possible for one

to be informative and therefore far from 1/2, while the other is non-informative, or close to

1/2. Whereas the personalized AUC is the average AUC of a typical cluster, the population

AUC is, setting aside ties in the data, the probability that a typical control observation in

the population is less than a typical case observation. The following proposition makes this

description precise. The consistency of θ̂12 follows from Corollary 8.

Proposition 1. 1. Let (X1, Y1,M1, N1), . . . , (XI , YI ,MI , NI), be a random sample of size

I IID according to P . Let PI be the joint distribution of independent random selections

from among the elements of X1, . . . , XI , and Y1, . . . , YI , and let (ξI , ηI) ∼ PI . Then

θ(PI) = Pr(ξI < ηI) + 1
2
Pr(ξI = ηI)→ θ12(P ) as I →∞.

2. Let ξ follow the distribution of X1i | M = m with probability P (M = m)/E(M), i =

1, . . . ,m,m = 1, 2, . . ., and, independently, let η follow the distribution of Y2j | N = n

with probability P (N = n)/E(N), j = 1, . . . , n, n = 1, 2, . . .. Then θ12(P ) = Pr(ξ <

η) + 1
2
Pr(ξ = η).

The definition of the population AUC (4) allows for dependence between (M,N) and

(X, Y ) in capturing a population-level AUC in the sense of Proposition 1. Practical reasons

to avoid assuming (X, Y ) ⊥⊥ (M,N) include informative censoring, imbalanced designs, and

confounding by indication; Further examples are given in Benhin et al. (2005) and Bugni

et al. (2022). As an alternative definition of the population AUC, consider

θ′12 = E

(
ψ(X1, Y2)

M1N2

)
. (6)

This parameter is formally a closer counterpart to the personalized AUC (3), but does not

take into account different cluster sizes, with a small cluster contributing as much as a large
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cluster. This estimator would not therefore represent discrimination at the population level,

except in case (X, Y ) ⊥⊥ (M,N).

Similar to the population AUC estimator (5), Obuchowski (1997) presents the estimator

∑∑
i,j ψ(Xi, Yj)∑
iMi

∑
iNi

= θ̂12 +

∑
i ψ(Xi, Yi)∑
iMi

∑
iNi

. (7)

This estimator may be obtained as θ12(PI), where PI is the empirical distribution given a

sample of size I. It differs from θ̂12 only in including the diagonal terms, an asymptotically

negligible O(1/I) bias. The definition (4) was chosen in part as the probability limit of

(7). Though Obuchowski (1997) does not enunciate a clear statistical model, the analysis of

(7) rather than the simpler (6) perhaps suggests that Obuchowski (1997) too contemplates

(X, Y ) 6⊥⊥ (M,N).

The population AUC, which appears more prominently in past research, may lay a claim

to being the more natural generalization of the usual AUC since it equals the usual AUC

when M = N = 1. Below we argue that in general the population and personalized AUCs

are both important, complementary tools in evaluating an estimator. In the other direction,

we give inequalities that may be used in some situations to relate the two cluster AUCs.

3 Examples

3.1 Random effects model

We illustrate the population and personalized AUCs and their differences using a generic

random effects model with a location shift parameter. We show that the location shift can

be used to control the within-cluster informativity of the observations, thereby controlling the

personalized AUC, while separately the random effect can be used to control informativity

across clusters, controlling the population AUC. Real data illustrating these contrasts, in

less dramatic fashion than the artificial examples constructed here, are presented in Section
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7.

Let the distribution of (X, Y,M,N) given M,N be

X |M,N ∼ Z(M,N) + ξxi , i = 1, . . . ,M

Y |M,N ∼ Z(M,N) + ξyj + ∆, j = 1, . . . , N (8)

Here, ∆ > 0 is a non-random location shift between the control and case values, Z is a

random, cluster-level effect, and ξxi , ξ
y
j , i = 1, . . . ,M, j = 1, . . . , N, are IID individual effects.

The within-cluster dependence is induced by Z. The individual effects ξxi , ξ
y
j are assumed to

be independent of (M,N), but Z is not assumed to be so. To keep things simple, we assume

continuous densities are available, and so ψ(x, y) = {x < y}.

The personalized AUC is

θ11 = E

(
ψ11

M1N1

)
= E

(
1

M1N1

M1∑
i=1

N1∑
j=1

{X1i < Y1j}

)

= E

(
1

M1N1

M1∑
i=1

N1∑
j=1

{Z1 + ξxi < Z1 + ξyj + ∆}

)

= E

(
1

M1N1

M1∑
i=1

N1∑
j=1

P (ξxi − ξ
y
j < ∆ |M1, N1)

)

= P (ξ1 − ξ2 < ∆). (9)

Lemma 9 was used to pull the conditional expectation inside the double sum.
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The population AUC is

θ12 =
1

E(M)E(N)
E

(
M1∑
i=1

N2∑
j=1

{X1i < Y2j}

)

=
1

E(M)E(N)
E

(
M1∑
i=1

N2∑
j=1

P (Z1 + ξx < Z2 + ξy + ∆ |M1, N1,M2, N2)

)

=
1

E(M)E(N)
E (M1N2P (Z1 + ξx < Z2 + ξy + ∆ |M1, N1,M2, N2))

= E

(
M1N2

E(M)E(N)
{Z1 − Z2 + (ξx − ξy) < ∆}

)
(10)

The last expression is a covariance-like term lying between 0 and 1.

Informative personalized AUC, uninformative population AUC

From (9), θ11 → 1 as ∆→∞.

Let Z be independent of (M,N, ~ξx, ~ξy). Then θ12 = P (Z1 + ξx − (Z2 + ξy) < ∆). As

a difference of two IID random variables, Z1 + ξx − (Z2 + ξy) is symmetric about 0, and

θ12 = P (Z1 + ξx − (Z2 + ξy) < ∆) = 1− P (Z1 + ξx − (Z2 + ξy) ≥ ∆) = 1− 1/2P (|Z1 + ξx −

(Z2+ξy)| ≥ ∆). As P (|Z1+ξx−(Z2+ξy)| ≥ ∆) ≥ 1−2∆|fZ+ξ|∞ ≥ 1−2∆|fZ |∞, a sufficient

condition for θ12 → 1/2 is |fZ |∞ → 0. For example, suppose Z belongs to a scale family,

fZ = fZ0(Z/
√

Var(Z))/
√

Var(Z) for a fixed density fZ0 , |fZ0|∞ <∞, and Var(Z)→∞.

Therefore, for ∆ = E(Y11)− E(X11) large enough, θ11 is arbitrarily close to 1, while for

any fixed ∆, for Var(Z) large enough, θ12 may approach 1/2.

Informative population AUC, uninformative personalized AUC

From (9), θ11 → 1/2 as ∆→ 0, ξx − ξy being symmetric about 0.

The covariance-like term (10) may approach 1 when there is a large negative covariance

between M,N, and Z1 − Z2, i.e., a large negative covariance between M and Z or large

positive covariance between N and Z, or both. Suppose (1) Corr(M1N2, Z1−Z2) is close to

−1, (2) Var(M1N2) is large, (3) ∆ ↓ 0, (4) the counts M,N are bounded, and (5) Var(ξ) is

small. For ∆ sufficiently small, P (Z1−Z2+(ξx−ξy) < ∆) > 1/2−ε, since Z1−Z2+(ξx−ξy)

is a symmetric RV. As Var(M1N2) maxes out, by (4) M1N2 approximates a balanced two-
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point distribution, so P (M1N2 > 2E(M1N2)− ε) > 1/2− ε and P (M1N2 < ε) > 1/2− ε. As

Corr(M1N2, Z1 − Z2) → −1 and Var(ξ) → 0, Corr(M1N2, {Z1 − Z2 + (ξx − ξy)) → −1. As

Corr(M1N2, Z1−Z2+(ξx−ξy)) approaches perfect negative linearity, P ({Z1−Z2+(ξx−ξy) <

∆} ∩ {M1N2 > 2E(M1N2)− ε}) > P (M1N2 > 2E(M1N2)− ε)− ε > 1/2− 2ε. Therefore,

θ12 = E

(
M1N2

E(M)E(N)
{Z1 − Z2 + (ξx − ξy) < ∆}

)
>

1

E(M)E(N)
P ({Z1 − Z2 + (ξx − ξy) < ∆} ∩ {M1N2 > 2E(M1N2)− ε})

× (2E(M1N2)− ε)

>
1

E(M)E(N)
(1/2− 2ε)(2E(M1N2)− ε)

= 1− o(1).

Figure 1 presents a simulation using Gaussian data to demonstrate the discussed differences

between the population and personalized AUCs. The model is an example of the random

effects model (8) and is discussed further in Section 6. Though a large location shift can

push the personalized AUC close to 1, large inter-cluster variance relative to intra-cluster

variance keeps the population AUC uninformative. Similarly, if the number of case observa-

tions relative to control is positively associated with the observation values, the population

AUC may approach 1 irrespective of the personalized AUC.

3.2 Binary response model

Models for case and control data are often given by specifying the status conditional on the

marker, rather than vice versa as in Example 3.1. Let σ denote a monotone link such as

the probit or logistic function. Fixing the cluster size M + N = k, let continuous cluster

effects Z, continuous within-cluster effects ξ, and within-cluster status indicators D specify
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(a) (b)

Figure 1: Two visualizations contrasting the personalized and population AUCs. Each gives
rug plots of fifteen clusters of data, each cluster sampled IID according to a bivariate normal
model, with the unclustered data combined at the bottom. Case observations are represented
with “−” and control observations with “|”. On the left, the personalized AUC is informative
and the population AUC uninformative. The reverse situation is presented on the right.
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the distribution of a cluster as follows:

~ξ = (ξ1, . . . , ξk) IID

Z ⊥⊥ (ξ1, . . . , ξk)

Bi = Z + ξi, i = 1, . . . , k

Di | ~Z, ~ξ ∼ bernoulli with parameter σ(β0Z + β1ξi), i = 1, . . . , k

M =
k∑
i=1

(1−Di), N =
k∑
i=1

Di.

The control and case observations in a cluster, Xi and Yi, are then those Bi such that Di = 0

and Di = 1, respectively. Here the cluster allocations M and N and the markers ~B can

be dependent, both being functions of Z and ~ξ, though they are conditionally independent

given the statuses ~D.

Suppose first that β0 > 0 and β1 = 0, so P (Di = 1 | Z, ξ) = σ(β0Z). The population

AUC is

θ12 =
1

E(M)E(N)
E

(
k∑
i=1

k∑
j=1

{B1i < B2j}{D1i = 0}{D2j = 1}

)

=
1

E(M)E(N)
E

(
k∑
i=1

k∑
j=1

P (B1i < B2j | D1i = 0, D2j = 1){D1i = 0}{D2j = 1}

)

= P (B11 < B21 | D11 = 0, D21 = 1)

= P (Z11 − Z21 < ξ21 − ξ11 | D11 = 0, D21 = 1).

Since Z11 | D11 = 0 is stochastically less than Z21 | D21 = 1, with the difference increasing

in β0, and since the ξs are independent of the Zs and Ds, the last line is > 1
2
, with the

difference increasing in β0.
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On the other hand, since β1 = 0 implies ~ξ ⊥⊥ ( ~D,M,N), the personalized AUC is

θ11 = E

(
1

MN

k∑
i=1

k∑
j=1

{B1i < B1j}{Di1 = 0 and Dij = 1} |M > 0, N > 0

)

= E

(
1

MN

k∑
i=1

k∑
j=1

{ξ1i < ξ1j}{Di1 = 0 and Dij = 1} |M > 0, N > 0

)

= P (ξ11 < ξ12) = 1/2.

Two possible instances of the model:

(a) The cluster effect Z represents a genuine signal of disease status D, such as viral load

does for HIV status, and ξ represents non-systematic measurement error on instruments

measuring Z. In this case, the population AUC better matches expectations of an

AUC measurement than the personalized AUC. The biomarker B isn’t completely

uninformative, as θ11 suggests.

(b) The cluster effect Z is a subject’s dose of a possibly ineffective drug, and larger doses

are administered to sicker patients. The subject-specific measurements ξ represent

non-systematic measurement error again. Here the association between the marker

and disease status implied by the population AUC is spurious, and may or may not

be of value to the analyst. It is possible that the personalized AUC, which does not

convey any association, is preferable.

Reversing the roles of the cluster-level effect Z and within-cluster effects ξ, suppose β0 = 0

and β1 > 0, so that θ12 ≈ 1/2 and θ11 > 1/2. Two instances of this second model are:

(c) The markers B are measurements on a patient, and D denotes the presence of a

disease that depends little or not at all on a baseline measure Z but is indicated by

the deviations ξ from the baseline. As a second example, the markers B are post-test

measurements on a population that has been stratified by pre-test measurement Z.

The subject effects ξi = Bi − Z represent the difference between post-test and pre-
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test measurements, and the status indicators D represent an effective or ineffective

intervention. Here the personalized AUC probably carries the correct interpretation.

(d) A population clustered along any given dimension Z, and, analogous to (b), uptake of a

possibly ineffective drug is confounded by indication. That is, sicker individuals, those

for which Di is more likely to be 1, take higher doses ξi of the drug. Here again a causal

analysis would suggest the population AUC as less misleading than the personalized

AUC, though a non-causal analysis, e.g., an intention-to-treat analysis, may point to

the personalized AUC.

Simpson’s paradox, understood broadly, refers to situations where data is clustered and

exhibits a consistent trend at each cluster, but exhibits a contrary trend when the unclus-

tered data is analyzed. The examples in Section 3.1 are instances of this phenomenon. The

individual and population AUCs are clustered and unclustered analyses that can yield op-

posite conclusions about the quality of the predictor. Contemporary analyses of Simpson’s

paradox show the importance of considering both the individual and population AUCs.

Working in the framework of causal inference, Pearl (2014) argues that the paradox arises

from the subtle relationship between causal intervention and statistical conditioning. Human

judgments, which align more closely with causal relations, may be contradicted by one of the

analyses when it represents a non-causal association. Resolution of the paradox therefore

amounts to formally identifying which of the two analyses represents causal relationships, if

either. The correct analysis in any given situation, whether the clustered or unclustered anal-

ysis, requires information about the underlying causal relationships between the treatment,

outcome, and clustering variable.

4 Simplifications when (X, Y ) ⊥⊥ (M,N)

Under some conditions, the cluster AUC parameters θ12 and θ11 may simplify to the M =

N = 1 case. The examples given in Section 3 are of this sort. The exchangeable cluster
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structure enables the simplification.

Proposition 2. Given (X, Y,M,N) ∼ P , suppose that E(ψ(X1k, Y1l) |M,N) and E(ψ(X1k, Y2l) |

M,N) do not depend on k, l. Then θ11(P ) = Eψ(X11, Y11) and θ12(P ) = Eψ(X11, Y21).

In order for θ̂12 → 1 while θ̂11 6→ 1 in the random effects model discussed in Section 3, it

was necessary that (X, Y ) 6⊥⊥ (M,N). Theorem 3 below bounds θ12 by θ11 in one situation

where (X, Y ) ⊥⊥ (M,N), namely, when M and N are each constant.

Theorem 3. Let (X, Y,M,N) ∼ P be given as in (1). Assume further that M = m and

N = n are constant. Then

1

2

(
θ11 +

∑
k,l P (X1k = Y1l)

2mn

)2

≤ θ12 ≤ 1− 1

2

(
1− θ11 +

∑
k,l P (X1k = Y1l)

2mn

)2

.

The theorem follows from the lemma,

Lemma 4. Given a pair of scalar random variables (X, Y ) with joint distribution P , let P⊥⊥

be the product measure of the marginals, i.e., for all real a, b,

P⊥⊥({x < a} ∩ {y < b}) = P ({x < a})P ({y < b}).

Then

1

2
(P (X < Y ) + P (X = Y ))2 ≤ P⊥⊥(X < Y ) +

1

2
P⊥⊥(X = Y ) ≤ 1− 1

2
(1− P (X < Y ))2.

Let the random vector (X, Y,M,N) follow P with constant M = N = 1, so that P may

be regarded as the joint distribution of (X, Y ), assumed continuous. Then the conclusion of

the Lemma is

1

2
(θ11(P ))2 ≤ θ12(P ) ≤ 1− 1

2
(1− θ11(P ))2, (11)
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equivalently,

1−
√

2(1− θ12) ≤ θ11 ≤
√

2θ12.

When the personalized AUC is completely uninformative, θ11 = 1/2, the informativity of

the population AUC is limited, 1/8 ≤ θ12 ≤ 7/8. However, when the population AUC is

completely uninformative, θ12 = 1/2, the above bounds on the personalized AUC, which are

tight, are vacuous, 0 ≤ θ11 ≤ 1. Situations as described in Section 3, where the population

AUC → 1 while the personalized AUC → 1/2, appear to require some dependence between

M,N and X, Y .

5 Asymptotic Distribution of (θ12, θ11)

Theorem 5 gives the asymptotic joint distribution of the individual and population AUCs. It

is stated in somewhat greater generality for any square-integrable kernel, not just the AUC

kernel (2). The proof is the same for any random variables M,N , such that EM 6= 0, EN 6=

0, EM−2 < ∞, EN−2 < ∞, i.e., M and N need not be the lengths of X and Y . Let V

denote the space of finite sequences.

Theorem 5. Let ψ : V × V → R, (X, Y,M,N) ∼ P with (X, Y ) ∈ V × V , ψ ∈ L2(P ),

and let M and N be counting numbers > 0 with finite means. Given a sample Wi =

(Xi, Yi,Mi, Ni), i = 1, . . . , I, from P ,

√
I(θ̂12 − θ12, θ̂11 − θ11) N (0,Σ)
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with

Σ11 = lim
I→∞

I Var(θ̂12) = E

(
E(ψ12 | W1) + E(ψ21 | W1)

E(M)E(N)
− θ12

(
M1

E(M)
+

N1

E(N)

))2

Σ22 = lim
I→∞

I Var(θ̂11) = Var(ψ11/(M1N1))

Σ12 = lim
I→∞

I Cov(θ̂12, θ̂11) = θ12E

(
ψ11

M1N1

(
ψ12 + ψ21

Eψ12

− M1

E(M)
− N1

E(N)

))

Corollary 6. Under the assumptions of Theorem 5, let (X1, Y1,M1, N1), . . . , (XI , YI ,MI , NI),

be IID according to P . For 1 ≤ i ≤ I define

ψi· = I−1
I∑
j=1

ψ(Xi, Yj),

ψ·i = I−1
I∑
j=1

ψ(Xj, Yi),

φi =
ψ(Xi, Yi)

MiNi

,

and analogously for M·, N·, and ψ··. The asymptotic covariance matrix Σ of (θ̂12, θ̂11) may

be consistently estimated by Σ̂ given by:

Σ̂11 =
1

I − 1

I∑
i=1

(
ψi· + ψ·i
M·N·

− θ̂12
(
Mi

M·
+
Ni

N·

))2

Σ̂22 =
1

I − 1

I∑
i=1

(φi − φ·)2

Σ̂12 =
1

I

I∑
i=1

(
φi
φ·

(
ψi· + ψ·i
ψ··

− Mi

M·
− Ni

N·

))

Proof. See Sen (1960) for convergence results for random variables like ψi· and ψ·i.

The estimator Σ̂11 of the asymptotic variance of θ̂12 is the same as given by Obuchowski

(1997), derived by a different method. The finite-sample performance of this estimator is

examined in Section 6.
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6 Simulation

We examine estimation and inference on the population and personalized AUCs jointly.

Many of the choices and parameters follow the simulation in Obuchowski (1997) examining

what is here referred to as the population AUC. Key differences include: 1) In our model

M > 0, N > 0, to ensure that the personalized AUC is well-defined; 2) Whereas Obuchowski

(1997) take I = 100, we take the number of clusters to be I = 60 in the coverage simulation,

Section 6.2, and I = 10 in the power simulation, Section 6.3.

6.1 Data models

To generate (M,N), first a preliminary number M + N of combined case and control ob-

servations belonging in a sample is randomly selected from among k ∈ {2, 3, 4, 5}. Next, to

obtain the allocation to case and control observations, M +N normal variables are sampled

with unit variance and common pairwise correlation ρMN ∈ {0, 0.1, 0.4, 0.8}. A preliminary

number M of control observations is taken to be those greater than 0, and the remainder

the preliminary number N of case observations. Finally, 1 is added to each to obtain the

final number of control and case observations, M = M + 1, N = N + 1. The greater the

correlation ρMN , the greater the imbalance between case and control observations within the

clusters.

Two related models were considered for (X, Y ) | (M,N).

Bivariate normal model A popular parametric model for the AUC is the “binormal”

model, where the case and control observations are taken to be jointly Gaussian (Hanley,

1988). Following Obuchowski (1997) we extend this model to accommodate clustered data by

modeling the observations as multivariate normal vectors with an exchangeable correlation
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structure.

(X, Y ) | (M,N) ∼ NM+N


0 · 1M

∆ · 1N

 , ρ1M+N1
T
M+N + (1− ρ)IdM+N

 (12)

That is, the case and control observations of a given cluster all have unit variance and share

the same pairwise correlation ρ, all the case observations have mean ∆ > 0, and all the control

observations mean 0. The bivariate normal model is in fact an example of the random effect

model described in Section 3, though the random effect is not given explicitly in (12). As the

impact of the random effect discussed there is only to change the intra-cluster correlation or

mean in (12), it is redundant to the usual multivariate normal parameters. Moreover, further

parameters such as for a non-zero control mean E(X11) or non-unit variances Var(X11) and

Var(Y11) are redundant for our purpose of modeling AUCs.

Using Proposition 2,

θ12(P ) = Φ

(
∆√

2

)
θ11(P ) = Φ

(
∆√

2(1− ρ)

) (13)

The formulas (13) show that θ11 > θ12 and further that θ12 and θ11 are simultaneously

> 1/2,= 1/2, or < 1/2. We give two benefits. The first is that (θ12, θ11) can be restricted

without loss of generality to [1/2, 1]× [1/2, 1], switching control and case labels if necessary.

The pair (θ12, θ11) may then serve as a parameterization of the bivariate normal model

(12), solving for ∆ and ρ in (13). The second involves testing. Though AUCs are often

compared by magnitude, e.g., H0 : AUC1 − AUC2 > 0, one is usually interested in the

discrimination, i.e., |AUC1−1/2| versus |AUC2−1/2|. With the latter view, the hypothesis

H0 : AUC1 − AUC2 > 0 is ambiguous, indicating that AUC1 is more discriminating than

AUC2 when both are greater than 1/2, but less discriminating if both are less than 1/2. A

further complication when comparing AUCs in general, which will not be solved by switching
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the class designations, is that one AUC may be greater than 1/2 and the other less. These

complications are avoided in the bivariate normal model for the personalized and population

AUCs. A test of θ12 = θ11 versus θ12 < θ11 is also a test of discrimination, |θ12 − 1/2| =

|θ11 − 1/2| versus |θ12 − 1/2| < |θ11 − 1/2|.

Censored bivariate normal model

We also examine the bivariate normal model under censoring, a mixed discrete-continuous

distribution. Let a > 0, let (X,Y ) | (M,N) be sampled as in (12), and let

(X, Y ) | (M,N) = (−a{X ≤ −a}+X{−a < X < a}+ a{X ≥ a},

− a{Y ≤ −a}+ Y {−a < Y < a}+ a{Y ≥ a}).
(14)

That is, observations (X,Y ) are generated as in the bivariate normal model (12), and the

values are then clipped to ±a. This type of data-generating process is used by Obuchowski

(1997) to model radiologists’ scores, which lie on a 0—100% scale and often accumulate at

0% and 100%.

Let

(X11, Y11) ∼ N2


 0

∆

 ,

1 ρ

ρ 1


 .

Again using Proposition 2 to reduce to the M = N = 1 case,

θ12(P ) = −
∫ a

−a
Φ(x−∆)φ(x)dx+

1

2
(Φ(a)− Φ(a−∆)− Φ(−a−∆)

+ Φ(a)(Φ(−a−∆) + Φ(a−∆)) + 1)

θ11(P ) =

∫ a

−a

∫ a

x

fX11,Y11(x, y)dydx+ Φ(−a) + 1− Φ(a−∆)− 1

2
P (X11 < −a, Y11 < −a)

− 1

2
P (X11 > a, Y11 > a)− P (X11 < −a, Y11 > a).

Due to the censoring, the AUCs may be bounded below 1 in this model, regardless of the

magnitude of the location shift between the underlying control and case observations. As

20



The Population and Personalized AUCs 6 SIMULATION

∆→∞, θ12 and θ11 both tend to 1
2
(1 + Φ(a)).

6.2 Coverage

The parameters ∆ and ρ were set to correspond to a population AUC of θ12 ∈ {0.7, 0.8} and

personalized AUCs of θ11 ∈ {0.7, 0.8, 0.9} with θ11 ≥ θ12. For each setting of ρMN , θ12, θ11,

1, 000 replicates of size I = 60 were sampled and used to form a confidence ellipse for

(θ12, θ11). Specifically, with θ̂12, θ̂11 computed as in Section 2 and Σ as in Theorem 5, under

P ,

∣∣∣∣Σ−1/2

θ12
θ11

−
θ̂12
θ̂11


∣∣∣∣2 (15)

has a chi-squared distribution with 2 degrees of freedom. If q is an upper α quantile of this

distribution, then 
x
y

 :

∣∣∣∣Σ−1/2

x
y

−
θ̂12
θ̂11


∣∣∣∣2 < q


is a level 1− α confidence region for (θ12, θ11), which then covers (θ12, θ11) when (15) is < q.

In the simulation, we substitute for Σ the asymptotic approximation Σ̂ given in Corollary

6. Results are presented in Table 1. The bias is on the order of a hundredth at this sample

size, and the coverage is generally close to .95. There is some degradation in the coverage as

(θ12, θ11) approach (1, 1).

6.3 Power

We examine the power of testing the null hypothesis H0 : θ12 = θ11 using the proposed

variance estimators under the bivariate normal model (12). Restricting to ρ > 0 in (12),

the set of alternatives to H0 : 1/2 < θ12 = θ11 is HA : 1/2 < θ12 < θ11, i.e., where the

personalized AUC is more discriminating than the population AUC.
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parameters coverage bias x 1000

θ12 θ11 ρMN θ12 θ11 Σ11 Σ12 Σ22

0.70 0.70 0.00 0.93 2.09 0.94 -5.66 -6.38 -4.61
0.70 0.70 0.10 0.94 2.18 1.22 1.94 1.56 2.46
0.70 0.70 0.40 0.94 1.14 1.07 6.41 5.58 4.11
0.70 0.70 0.80 0.93 2.53 -1.24 2.95 0.59 0.50
0.70 0.80 0.00 0.93 1.16 -0.76 3.59 5.23 2.04
0.70 0.80 0.10 0.93 1.93 0.41 5.65 5.82 -1.17
0.70 0.80 0.40 0.93 -0.21 0.75 -3.59 -1.25 -0.97
0.70 0.80 0.80 0.93 -0.95 -2.43 -9.59 -2.95 -0.72
0.80 0.80 0.00 0.93 0.69 -0.33 -1.49 -1.51 -0.79
0.80 0.80 0.10 0.93 2.21 0.36 4.94 3.34 2.84
0.80 0.80 0.40 0.92 0.59 -0.42 0.90 2.44 3.47
0.80 0.80 0.80 0.93 1.02 -0.22 4.23 4.06 5.33
0.80 0.90 0.00 0.90 2.39 1.87 -1.05 -0.45 -2.89
0.80 0.90 0.10 0.91 0.46 -0.28 0.83 1.15 0.33
0.80 0.90 0.40 0.92 -0.05 -0.95 8.86 3.31 1.96
0.80 0.90 0.80 0.91 3.20 -1.50 -0.94 -0.08 -0.12

(a) Binormal model (12)

parameters coverage bias x 1000

θ12 θ11 ρMN θ12 θ11 Σ11 Σ12 Σ22

0.70 0.70 0.00 0.94 0.51 -0.08 4.92 2.03 2.29
0.70 0.70 0.10 0.94 -3.41 -3.31 9.87 7.38 8.83
0.70 0.70 0.40 0.95 1.18 1.87 1.48 -5.06 -2.10
0.70 0.70 0.80 0.93 4.67 1.30 -2.15 -1.17 -1.80
0.70 0.80 0.00 0.92 1.68 0.84 -1.95 -2.88 -5.02
0.70 0.80 0.10 0.93 2.60 0.53 2.16 2.91 3.38
0.70 0.80 0.40 0.93 1.16 -0.54 -2.68 -0.33 0.03
0.70 0.80 0.80 0.93 5.34 1.74 1.25 -3.48 -8.08
0.80 0.80 0.00 0.94 1.59 0.00 0.44 -0.96 0.82
0.80 0.80 0.10 0.94 0.64 -1.45 1.13 -0.25 0.33
0.80 0.80 0.40 0.93 2.03 -1.19 5.15 3.03 2.46
0.80 0.80 0.80 0.93 1.26 0.04 -2.46 -1.73 -0.16
0.80 0.90 0.00 0.92 1.25 -8.08 2.21 -1.19 -4.51
0.80 0.90 0.10 0.92 1.81 -7.24 -0.98 0.64 4.38
0.80 0.90 0.40 0.92 1.76 -6.56 -1.60 -3.79 -3.01
0.80 0.90 0.80 0.91 3.27 -7.55 1.44 1.89 3.81

(b) Binormal model with censoring (14)

Table 1: The results of a simulation examining the coverage of a nominal 95% confidence
ellipse obtained using the asymptotic estimator given in Section 5. For θ11 and θ12, the bias is
computed as the mean difference between the estimates and the known true values. For the
elements of the covariance matrix Σij, the bias is the mean difference between the estimates
given by Theorem 5 and the empirical covariance.
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(a) Bivariate normal model (12)
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(b) Bivariate normal model with censoring (14)

Figure 2: Empirical power function of the test of H0 : θ12 = θ11 versus θ12 < θ11 using the
asymptotic estimator given in Section 5. In the bivariate normal model with or without
censoring, the null is equivalent to H0 : |θ12 − 1/2| = |θ11 − 1/2|, equal informativity.

The data is generated under (12) using (θ12, θ11) selected from points randomly and

uniformly selected in [1
2
, 1]× [1

2
, 1], {θ11 ≥ θ12}. Estimates θ̂12, θ̂11, and Σ̂ were then obtained

as described above. The test is carried out by testing the significance of the z-statistic

(θ̂12 − θ̂11)/
√
ctΣ̂c

where the contrast vector c is (1,−1)t.

The observed power functions are plotted in Fig. 2. The number of clusters was chosen

to be I = 10, few relative to the setting in Obuchowski (1997) , since the qualitative behavior

of the power surface appears clearer with fewer clusters.
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7 Data analysis

We examine data on police behavior and give 3 analyses leading to 3 different relationships

between the population and personalized AUCs: the population AUC 1) significantly more

than, 2) significantly less than, and 3) not significantly different from the personalized AUC.

The data consists of Terry stops in New York City and Boston. As a legal concept, a

Terry stop is a policing procedure whereby an officer briefly detains an individual based on

a reasonable suspicion that a crime has been committed, which is a lower evidentiary bar

than required to arrest the individual. Terry stops are colloquially referred to as “stop and

frisks” though the suspect need not be frisked or searched. The analysis here focuses on the

relationship between the duration of the stop and race of the suspect. We cluster the stops

according to precinct, in the case of NYC, and according to the officer conducting the stop, in

the case of Boston. There is an extensive literature examining the relationship between race

and Terry stops. Duration of the stop in particular is examined in, e.g., Ridgeway (2006),

clustering at the precinct level in, e.g., Goel et al. (2016), and clustering at the officer level

in, e.g., Ridgeway and MacDonald (2009).

The NYC data consists of measurements on 54,587 stops carried out between 2017 and

2021. The Boston data consists of 6,591 stops carried out between 2019 and 2021. The stop

durations range between 0 minutes and 1–2 hours, with modes at multiples of 5 minutes, and

15 minutes being the most commonly recorded duration. Measurement error is inevitable; see

Section 3.2, (a)—(d), for two contrasting illustrations of how it may affect the interpretation

of the results here. While data is available for years prior to the cutoffs used here, key

covariates used in the analysis were either missing or coded differently in the earlier data.

So that the personalized AUC could be estimated, the data was further restricted to those

clusters with at least 1 control and 1 case observation, where the interpretation of “control”

or “case” depends on the racial classification under analysis below. The final number of

clusters and cluster sizes are given in Table 3.

The racial classifications we consider are Black, White, and Hispanic; see Table 3 for
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breakdowns. In the first two analyses below, race is considered apart from Hispanic ethnicity,

i.e., Black and White is taken to include Black Hispanic and White Hispanic, somewhat

uncommon in analyses of policing. In the third the more common treatment of Black and

White as exclusive of Hispanics is considered.

1. θ12 < θ11. With Black race as the binary classification, the AUC analysis looks for a

difference in location between the distribution of stop durations of non-Black (“con-

trol”) and Black (“case”) suspects. For the NYC data, the population AUC estimate

is θ̂12 = 0.46 with 95% CI 0.45—0.47, significantly different from the null value of 1/2.

The personalized AUC estimate is θ̂11 = 0.50 with a 95% CI 0.47—0.53. A test of

equality H0 : θ12 = θ11 against θ12 < θ11 returns a p-value of .05%. The Boston data is

similar. The population AUC estimate is 0.46 [0.42, 0.50] and the personalized AUC

estimate is 0.52 [0.46, 0.58]. A test of equality H0 : θ12 = θ11 against θ12 < θ11 returns

the p-value .91%. Confidence ellipses are plotted in Figure 3. The data recalls the

situation depicted in Fig. 1b, though of course the difference between the two AUCs

is less dramatic here than in the artificial example constructed there.

2. θ11 < θ12. We next consider differences in duration of stop between non-White (“con-

trol”) or White (“case”) suspect status. As Table 2 indicates, the vast majority of

suspects are either Black or White, when those categories are taken inclusive of His-

panics, so one might expect that the analysis for non-White/White status to be nearly

the same as the analysis for Black/non-Black status, therefore simply reversing the di-

rection of the results just given, i.e., reflecting the AUCs across 1/2. That expectation

largely holds for the NYC data, where the population and personalized AUCs are 0.53

[0.52, 0.54] and 0.50 [0.48, 0.53], and the population AUC remains the only one of the

two significantly different from the null value 1/2. For the Boston estimates, however,

the personalized AUC, 0.46 [0.40, 0.53], is more informative than the population AUC,

0.52 [0.48, 0.55], with the test of equality versus θ11 < θ12 returning a p-value of 2.5%.

This analysis therefore corresponds to the situation in Fig. 1a.
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NYC Boston

group mean duration
(SD)

count freq. mean duration
(SD)

count freq.

Asian 14.24 (21.16) 1139 0.02 25.00 (24.22) 53 0.01
Black Hispanic 11.01 (17.12) 4675 0.09 15.28 (18.73) 391 0.06
Black non-Hispanic 10.99 (16.78) 31588 0.58 19.06 (28.93) 3448 0.55
White Hispanic 11.21 (15.15) 11486 0.21 15.63 (15.96) 578 0.09
White non-Hispanic 12.85 (16.18) 4854 0.09 21.74 (33.01) 1760 0.28
other 11.84 (17.70) 261 0.00 20.89 (23.90) 93 0.01

Table 2: Summary estimates on the duration of Terry stops by racial group.

3. No significant difference between θ12 and θ11. Finally, we consider duration of the stop

between non-Hispanic (“control”) and Hispanic (“case”) suspects. For both the NYC

and Boston data, neither the population AUC nor personalized AUC is significantly

different from the null value 1/2, and the test of equality of the two AUCs fails to reject.

As a second example, in Boston, whether one takes the case status to be non-Hispanic

Black or non-Hispanic White, the two AUCs are statistically indistinguishable from

each other and each is indistinguishable from the null value 1/2.

The decision to cluster at the officer or precinct level, as opposed to, say, the time of

day of the stop, age of the suspect, or other partition of the data, is in part arbitrary.

For the application of the definitions and results given in the previous sections, the decision

amounts to the idealization that the officers’ or precincts’ data are drawn independently from

a universe of officers or precinct Terry stop data. At the same time, many current analyses,

such as cited above, besides this IID assumption further impose modeling assumptions such

as linear random effects or logistic links. The approach here has the advantage of being

otherwise nonparametric.

8 Discussion

We have compared and contrasted two generalizations of the AUC to accommodate clustered,

paired data. Straightforward extensions include allowing for multiple dependent AUCs, clus-
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case group data set I ΣMi ΣNi θ12 θ11 H0 : θ12 = θ11

Black NYC 187 17698 36152 0.46 [0.45, 0.47] 0.50 [0.47, 0.53] 0.00
Boston 112 418 585 0.46 [0.42, 0.50] 0.52 [0.46, 0.58] 0.02

Black non-Hispanic NYC 185 22348 31490 0.47 [0.46, 0.48] 0.51 [0.48, 0.53] 0.01
Boston 117 464 569 0.48 [0.44, 0.51] 0.50 [0.44, 0.56] 0.30

Black Hispanic NYC 154 48847 4672 0.48 [0.47, 0.49] 0.49 [0.47, 0.52] 0.42
Boston 41 494 62 0.44 [0.37, 0.51] 0.49 [0.40, 0.59] 0.09

White NYC 185 37547 16298 0.53 [0.52, 0.54] 0.50 [0.48, 0.53] 0.04
Boston 109 614 385 0.52 [0.48, 0.55] 0.46 [0.40, 0.53] 0.05

White non-Hispanic NYC 148 48327 4838 0.56 [0.55, 0.58] 0.52 [0.49, 0.55] 0.00
Boston 106 631 324 0.52 [0.47, 0.56] 0.49 [0.43, 0.56] 0.39

White Hispanic NYC 176 42333 11463 0.51 [0.50, 0.52] 0.49 [0.47, 0.52] 0.30
Boston 62 631 89 0.48 [0.41, 0.55] 0.47 [0.39, 0.56] 0.81

Hispanic NYC 180 37693 16125 0.50 [0.49, 0.51] 0.49 [0.46, 0.52] 0.41
Boston 85 706 151 0.46 [0.41, 0.50] 0.48 [0.41, 0.55] 0.51

Table 3: Estimates of the population and personalized AUCs of the duration of Terry stops by racial group.
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Figure 3: Level 95% and 99% Confidence ellipses for the estimates of (θ11, θ12) for duration
of Terry stop by non-Black/Black status.
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ters that are only exchangeable or otherwise fall short of being IID, and covariate-adjusted

AUCs. A more delicate extension would allow for estimation of the personalized AUC when

some clusters have no control or no case observations. As the personalized AUC is not cur-

rently defined for such clusters either the definition would need to be re-worked or a model

would need to be introduced for the missing values corresponding to those clusters. No

major changes would be required of the analysis under a strong enough assumption such as

ignorability, i.e., the assumption that the behavior of the personalized AUC (or the pair) is

the same on M > 1, N > 1 as on the entire population.
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Deferred proofs are given below, beginning with a few short technical results relied on
by the main results. To save space, the value of a bivariate kernel ψ(Xi, Yj) is abbreviated
as ψij in some places.

The following lemma gives a convergence result for a two-sample U -statistic with kernel
of degree (1, 1) where the data is paired. The corresponding definitions and result for inde-
pendent samples are given in, e.g., Lee (2019). Let V denote the space of finite sequences.

Lemma 7. Given a sample (X0, Y0), (X1, Y1), . . . , (XI , YI) on V ×V IID according to P and
a function ψ : V × V → R in L2(P ), define

UI = (I)−12

∑
1≤i,j≤I
i 6=j

ψ(Xi, Yj), VI = I−2
∑

1≤i,j≤I

ψ(Xi, Yj),

and

ÛI = I−1
I∑
i=1

(E(ψ(Xi, Y0) | Xi, Yi) + E(ψ(X0, Yi) | Xi, Yi))− 2Eψ(X1, Y2).

Then
E(UI − EUI − ÛI)2 = O(I−2) and E(VI − EVI − ÛI)2 = O(I−2).

Proof of Lemma 7. Define

ψij = ψ(Xi, Yj)− E(ψ(Xi, Y0) | Xi, Yi)− E(ψ(X0, Yj) | Xj, Yj) + Eψ(X1, Y2).

Then, for i 6= j, E(ψij | (Xi, Yi)) = E(ψij | (Xj, Yj)) = 0, implying

E(UI − EUI − ÛI)2 = E

(
(I)−12

∑
i 6=j

ψij

)2

= (I)−22

∑
i 6=j

Eψ
2

ij +O(I−2)

= O(I−2).

For the second equation,

E(UI − EUI − VI + EVI)
2 = I−2E

(
(I)−12

∑
i 6=j

(
ψij + ψii −

I

I − 1
Eψ11 + Eψ12

))2

≤ I−2

(
(I)−12

∑
i 6=j

E

(
ψij + ψii −

I

I − 1
Eψ11 + Eψ12

)2
)

= O(I−2).

Corollary 8. With the same setup as Lemma 7, UI − EUI → 0 a.s. and
√
I(UI −

EUI)/
√

Var(UI)→ N (0, 1) in distribution.

30



The Population and Personalized AUCs APPENDIX

Proof of Corollary 8. By Lemma 7, UI − EUI → ÛI a.s. and
√
I(UI − EUI − ÛI) → 0 in

quadratic mean, and ÛI is an IID sum subject to the usual LLN and CLT.

Proof of Proposition 1. 1. By the LLN I2/(
∑

iMi

∑
iNi)→ 1/(E(M)E(N)) almost surely

and by Corollary 8
∑

i,j ψij/I
2 → Eψ12 almost surely. Conditioning on the sample,

Eψ(ξI , ηI) = E(E(ψ(ξI , ηI) | (X1, Y1,M1, N1), . . . , (XI , YI ,MI , NI))

= E

(∑
1≤i,j≤I

∑
1≤k≤Mi,1≤l≤Nj

ψ(Xik, Yjl)∑I
i=1Mi

∑I
i=1Ni

)

= E

( ∑
1≤i,j≤I ψij∑I

i=1Mi

∑I
i=1Ni

)
→ Eψ12

E(M)E(N)
= θ12.

The limit is justified since
∑

i,j ψi,j/(
∑

iMi

∑
iNi) ≤ 1.

2.

P (ξ < η) +
1

2
P (ξ = η) = Eψ(ξ, η)

=
∞∑
m=1

m∑
i=1

∞∑
n=1

n∑
j=1

E(ψ(X1i, Y2j) |M = m,N = n)
P (M = m)P (N = n)

(EM)(EN)

=
∞∑
m=1

∞∑
n=1

E

(
m∑
i=1

n∑
j=1

(ψ(X1i, Y2j) |M = m,N = n

)
P (M = m)P (N = n)

(EM)(EN)

=
1

(EM)(EN)
E

(
M∑
i=1

N∑
j=1

ψ(X1i, Y2j)

)
.

Proof of Proposition 2.

θ11(P ) = E

(∑M
k=1

∑N
l=1 ψ(X1k, Y1l)

MN

)

= E

(
1

MN
E

(
M∑
k=1

N∑
l=1

ψ(X1k, Y1l) |M,N

))

= E

(
1

MN
MNE(ψ(X11, Y11 |M,N))

)
= Eψ(X11, Y11).
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Similar to the above,

θ12(P ) =
E
(∑M1

k=1

∑N2

l=1 ψ(X1k, Y2l)
)

E(M)E(N)

=
E(M)E(N)Eψ(X11, Y21)

E(M)E(N)
= Eψ(X11, Y21).

Lemma 9. Given integrable random variables M,V,X1, X2, . . . , such that M ∈ {1, 2, . . .}
and

∑∞
i=1E(|Xi|;M ≥ i) <∞,

E

(
M∑
i=1

Xi

∣∣∣∣M,V

)
=

M∑
i=1

E(Xi |M,V )

Proof of Lemma 9.

E

(
M∑
i=1

Xi

∣∣∣∣M,V

)
= E

(
∞∑
m=1

{M = m}
m∑
i=1

Xi

∣∣∣∣M,V

)

=
∞∑
m=1

E

(
{M = m}

m∑
i=1

Xi

∣∣∣∣M,V

)

=
∞∑
m=1

m∑
i=1

{M = m}E(Xi |M,V )

=
M∑
i=1

E(Xi |M,V ),

the interchange in the second equality allowed since E
∣∣∣∑M

i=1Xi

∣∣∣ ≤ ∑∞i=1E(|Xi|;M ≥ i) <

∞.

Proof of Lemma 4. We introduce the bound in a simple case. Each cluster contributes just
one control and one case observation each, and their joint distribution P is supported on
finitely many points in the plane:

P =
B∑
i=1

piδ(xi,yi)

(xi, yi) ∈ R2 and 0 ≤ pi ≤ 1, i = 1, . . . , B

p1 + . . .+ pB = 1.

For this simple example, assume further that all the xi and yi are distinct, so ψ(x, y) = {x <
y}.
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The personalized AUC is

θ11(P ) = P (X < Y ) =
∑
i:xi<yi

pi.

The population AUC depends on the product of the marginals of X and Y , say, P⊥⊥,

θ12(P ) = P⊥⊥(X < Y ).

Since all the x-coordinates of the support points are distinct, the marginal distribution of
X is simply P⊥⊥(X = x) =

∑
i piδxi(x). Similarly, P⊥⊥(Y = y) =

∑
i piδyi(y). The product

measure is therefore a weighted sum of B2 atoms, P⊥⊥(X = x, Y = y) =
∑

i,j pipjδ(xi,yj)(x, y).
We give a lower bound for the population AUC P⊥⊥(X < Y ). An atom of P lying in {x < y}
of mass p contributes p2 to the mass given by P⊥⊥(X < Y ). Each pair of atoms of P lying
in {x < y} of mass p and q contributes, beyond p2 and q2, at least pq and possibly 2pq to
the mass given by P⊥⊥(X < Y ). See Figure 4. Therefore

θ12(P ) = P⊥⊥(X < Y ) ≥
∑
i:xi<yi

p2i +
∑
i:xi<yi

∑
j:xj<yj
i<j

pipj

=
1

2

( ∑
i:xi<yi

pi

)2

+
1

2

∑
i:xi<yi

p2i

≥ 1

2

( ∑
i:xi<yi

pi

)2

+
1

2|{i : xi < yi}|

( ∑
i:xi<yi

pi

)2

=
1

2
(1 + |{i : xi < yi}|−1)θ11(P )2.

The first inequality is tight when each each pair i, j such that xi < yi and xj < yj contributes
exactly pipj, i.e., when the square given by xi, xj and yi, yj has exactly one corner in {x < y},
so that yi − xi < xj − xi whenever xi < xj. The second inequality is Cauchy-Schwarz, and
is tight when all the atoms in {x < y} have the same mass.

By symmetry,

P⊥⊥(X > Y ) ≥ 1

2
(1 + |{i : xi > yi}|−1)P (X > Y )2,

leading to an upper bound

θ12 ≤ 1− 1

2
(1 + |{i : xi > yi}|−1)(1− θ11)2.

33



The Population and Personalized AUCs APPENDIX

•p1
•p2

•p3

Figure 4: The case M = N = 1 and finitely supported (X, Y ). The distance between the
atoms p1 and p2 is small relative to their distances to the line x = y, so they contribute
(p1 + p2)

2 to the mass of {x < y} under product of the marginals. The distance between p1
and p3 is relatively large, so they contribute only (p1 + p3)

2 − p1p3.

Combining these bounds,

1

2
θ211 ≤ θ12 ≤ 1− 1

2
(1− θ11)2,

or equivalently,

1−
√

2(1− θ12) ≤ θ11 ≤
√

2θ12.

Define for n ∈ N approximations to θ11 and θ12 by

A
(n)
ij =

{
(x, y) :

i

2n
≤ x <

i+ 1

2n
,
j

2n
≤ y <

j + 1

2n

}
, −22n ≤ i, j < 22n − 1

θ
(n)
11 =

22n−1∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij ) +

1

2

22n−1∑
i=−22n

P (A
(n)
ii )

θ
(n)
12 =

22n−1∑
i=−22n

22n−1∑
j=i+1

P⊥⊥(A
(n)
ij ) +

1

2

22n−1∑
i=−22n

P⊥⊥(A
(n)
ii ).

Since
⋃
n

⋃
i

⋃
j>iA

(n)
ij = {x < y} and

⋂
n

⋃
iA

(n)
ii = {x = y}, by continuity of measure

θ
(n)
11 → θ11 and θ

(n)
12 → θ12. Therefore, it is enough to establish the inequality (11) for θ

(n)
11

and θ
(n)
12 .

34



The Population and Personalized AUCs APPENDIX

Fixing n,

22n−2∑
i=−22n

22n−1∑
j=i+1

P⊥⊥(A
(n)
ij ) =

22n−2∑
i=−22n

22n−1∑
j=i+1

P⊥⊥(A
(n)
ij )

=
22n−2∑
i=−22n

22n−1∑
j=i+1

P⊥⊥(
i

2n
≤ x <

i+ 1

2n
)P⊥⊥(

j

2n
≤ y <

j + 1

2n
)

≥
22n−2∑
i=−22n

22n−1∑
j=i+1

(P (A
(n)
ii ) +

22n−1∑
k=i+1

P (A
(n)
ik ))(P (A

(n)
jj ) +

j−1∑
l=−22n

P (A
(n)
lj ))

=
22n−2∑
i=−22n

22n−1∑
j=i+1

(
22n−1∑
k=i+1

P (A
(n)
ik )

j−1∑
l=−22n

P (A
(n)
lj ) + P (A

(n)
ii )

j−1∑
l=−22n

P (A
(n)
lj )

+P (A
(n)
jj )

22n−1∑
k=i+1

P (A
(n)
ik ) + P (A

(n)
ii )P (A

(n)
jj )

)
.

We lower bound the first three terms in parentheses.
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First term:

22n−2∑
i=−22n

22n−1∑
j=i+1

22n−1∑
k=i+1

P (A
(n)
ik )

j−1∑
l=−22n

P (A
(n)
lj )

=
22n−2∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

22n−1∑
j=i+1

j−1∑
l=−22n

P (A
(n)
lj )

≥
22n−2∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

22n−1∑
j=i+1

j−1∑
l=i

P (A
(n)
lj )

=
22n−2∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

22n−2∑
l=i

22n−1∑
j=l+1

P (A
(n)
lj )

=
22n−2∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

22n−1∑
j=i+1

P (A
(n)
ij ) +

22n−2∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

22n−2∑
l=i+1

22n−1∑
j=l+1

P (A
(n)
lj )

≥
22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij )2 +

22n−2∑
i=−22n

22n−2∑
k=i+1

22n−1∑
j=k+1

P (A
(n)
ij )P (A

(n)
ik ) +

22n−2∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

22n−2∑
l=i+1

22n−1∑
j=l+1

P (A
(n)
lj )

=
∑∑∑∑

i 6=k or j 6=l
j>i and l>k

P (A
(n)
ij )P (A

(n)
kl ) +

22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij )2

=
1

2

(
22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij )

)2

+
1

2

22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij )2.

Middle two terms:

22n−2∑
i=−22n

22n−1∑
j=i+1

(
P (A

(n)
ii )

j−1∑
l=−22n

P (A
(n)
lj ) + P (A

(n)
jj )

22n−1∑
k=i+1

P (A
(n)
ik )

)

=
22n−2∑
i=−22n

P (A
(n)
ii )

22n−2∑
l=i

22n−1∑
j=l+1

P (A
(n)
lj ) +

22n−1∑
j=−22n+1

P (A
(n)
jj )

j−1∑
i=−22n

22n−1∑
k=i+1

P (A
(n)
ik )

=
22n−2∑
i=−22n

P (A
(n)
ii )

22n−2∑
l=i

22n−1∑
j=l+1

P (A
(n)
lj ) +

22n−1∑
i=−22n+1

P (A
(n)
ii )

i−1∑
l=−22n

22n−1∑
j=l+1

P (A
(n)
lj )

=

(
22n−1∑
i=−22n

P (A
(n)
ii )

)(
22n−2∑
l=−22n

22n−1∑
j=l+1

P (A
(n)
lj )

)
.

The second-to-last equality is just renaming indices.
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With these lower bounds,

θ
(n)
12 =

22n−1∑
i=−22n

22n−1∑
j=i+1

P⊥⊥(A
(n)
ij ) +

1

2

22n−1∑
i=−22n

P⊥⊥(A
(n)
ii )

≥ 1

2

(
22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij )

)2

+

(
22n−1∑
i=−22n

P (A
(n)
ii )

)(
22n−2∑
l=−22n

22n−1∑
j=l+1

P (A
(n)
lj )

)
+

22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ii )P (A

(n)
jj ) +

1

2

22n−1∑
i=−22n

P (A
(n)
ii )2

=
1

2

(
22n−2∑
i=−22n

22n−1∑
j=i+1

P (A
(n)
ij ) +

22n−1∑
i=−22n

P (A
(n)
ii )

)2

=
1

2

(
θ
(n)
11 +

1

2

22n−1∑
i=−22n

P (A
(n)
ii )

)2

.

=
1

2

(
θ
(n)
11 +

1

2
P (X = Y )

)2

+ o(1).

The upper bound then follows by the same symmetry argument as given in Section 4.

Proof of Theorem 3. With

θ11 =
1

mn
E(ψ11) =

1

mn

∑
i,j

(P (X1i < Y1j) +
1

2
P (X1i = Y1j))

Lemma 4 gives

θ12 =
1

mn
E(ψ12) =

1

mn

∑
i,j

(P (X1i < Y2j) +
1

2
P (X1i = Y2j))

≥ 1

mn

∑
i,j

1

2
(P (X1i < Y1j) + P (X1i = Y1j))

2

≥ 1

2

(
1

mn

∑
i,j

(P (X1i < Y1j) + P (X1i = Y1j))

)2

=
1

2

(
θ11 +

1

2mn

∑
i,j

P (X1i = Y1j)

)2

.

The second inequality is Jensen’s inequality, which is tight when the pairwise AUCs are all
equal. The other bound follows similarly.
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Proof of Theorem 5. By Lemma 7,

√
I

(
(I)−12

∑
i 6=j ψij − Eψ12

sd(
√
I(I)−12

∑
i 6=j ψij)

,
I−2

∑
i,jMiNj − E(M)E(N)

sd(I−3/2
∑

i,jMiNj)
,
I−1

∑
i ψii/(MiNi)− E(ψ11/M1N1)

sd(ψ11/M1N1)

)

converges to

I−1/2
I∑
i=1

(
E(ψi0 | Wi) + E(ψ0i | Wi)− 2Eψ12

sd(E(ψ10 | W1) + E(ψ01 | W1))
,
MiE(N) +NiE(M)− 2E(M)E(N)

sd(M1E(N) +N1E(M))
,

ψii/(MiNi)− E(ψ11/M1N1)

sd(ψ11/M1N1)

)
in mean-square. The latter is an IID sum with finite covariance matrix and is asymptotically
normal by the usual CLT. Applying the delta method with the function (x, y, z) 7→ (x/y, z),
with derivative (

1/y −x/y2 0
0 0 1

)∣∣∣∣
(x,y)=(θ12,E(M)E(N))

for y 6= 0, i.e., E(M) 6= 0, E(N) 6= 0, gives the asymptotic normality and stated asymptotic
covariance matrix of (θ11, θ12).
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