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Summary: Conducting a meta-analysis on a body of studies subject to publication bias is a
type of post-selection inference that may invalidate findings. Therefore, analysts often run a
hypothesis test to check for publication bias prior to conducting a meta-analysis. However,
conducting meta-analyses conditional on the outcome of such preliminary tests is itself a
form of post-selection inference. We investigate the effect on the outcome of a meta-analysis
of a null finding at the preliminary stage. We find that in many situations there is no or
little bias in the findings at the main stage.
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1 Introduction

Meta-analysis is a popular technique for summarizing a body of studies. Key to the soundness
of the results of a meta-analysis is that the subset of studies used in forming the summary
be representative of all the studies conducted. This requirement may fail to be met when
publication bias is present, that is, when the availability of a study is tied to its findings.
Several hypothesis tests have been proposed with the goal of alerting an analyst to the
presence of publication bias in a body of studies before they are used to carry out a meta-
analysis.

Two issues present themselves by this type of procedure, in which a preliminary hypoth-
esis test is used to screen data as suitable for a subsequent main analysis. The first is that
failing to reject the null of no publication bias in the preliminary stage is treated as a basis for
proceeding as though the null were true. Therefore the power of the preliminary hypothesis
test requires investigation (Michael and Ghebremichael, 2023; Michael, 2024).

The second issue is that screening may affect inference in the main analysis. Such biases
have been observed widely for unadjusted post-selection inference in general, and screening
tests in particular. Whether publication bias is present or not, a body of studies that passes
a screening test may differ from one that fails in a way that bears on the subsequent meta-
analysis. It would be unfortunate for a test of publication bias to itself bias the outcome of
a meta-analysis.

This paper will consider the effect of screening meta-analyses for publication bias. To do
so we look for dependency between the test statistics of the preliminary screening test and
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main test. Two tests for publication bias, Egger’s test and Begg’s test, will be considered,
while the meta-analysis test statistic will be the simple fixed effects summary estimate. As
analysts typically do not proceed to the second stage on a finding of significance at the
preliminary stage, we focus on data conditional on a null result at the screening stage. We
further restrict our focus to true nulls, i.e., studies unaffected by publication bias. The
question investigated is: In a world without publication bias, what is the effect of applying
versus not applying publication bias tests on the outcome of meta-analyses?

We find that in many situations, a validly applied screening test does not itself bias the
outcome of a subsequent meta-analysis. We find the possibility of strong bias only in the
case of Begg’s test with certain non-gaussian data. In this case, the main consequence is a
loss of power in the meta-analysis. Moreover, the data in which this issue arises is arguably
unlikely to be encountered in practice, though we do not examine this empirical question.

Previous work. There is an extensive literature on “post-selection inference,” i.e.,
inference on data under models chosen using the same data. Taylor and Tibshirani (2015)
gives an overview of recent work. In the context of meta-analysis, post-selection inference
usually centers on publication bias, i.e., the issue which publication bias tests are designed to
address. The collection Rothstein et al. (2005) gives a comprehensive overview of publication
bias in meta-analysis. We are not aware of literature discussing the post-selection effects of
screening by the result of publication bias tests. Screening is a particularly simple form of
selection. An early study of the effect of a preliminary screening test is Olshen (1973), which
found that applying Scheffé’s method to form intervals for regression coefficients conditionally
on rejection by a preliminary F-test decreases the coverage rate relative to an unconditional
procedure. More recently, Schucany and Tony Ng (2006) and Rochon et al. (2012) observe
that screening for normality using the Shapiro-Wilks test may lead to inflated Type 1 error
rates or loss of power, depending on the data.

Organization of the remainder of the paper. In Section 2 we introduce the meta-
analysis test statistic and the two publication bias tests used for the preliminary analysis.
In Section 3 we consider the effect of screening with finite sample sizes. The main result is
that under a gaussian assumption screening does not affect the main analysis. In Section
4 we drop the gaussian assumption and consider the asymptotic effects of screening. While
Egger’s test does not have any asymptotic effect under many conditions, Begg’s test may.
In Section 5 we illustrate the theoretical results using synthetic data, and in 6 we conclude
and offer future directions.

2 Background

2.1 Meta-analysis model

The data are modeled as pairs (Y1, σ
2
1), . . . , (Yn, σ

2
n) representing the estimated effect sizes

and sampling variances of n studies with a common mean effect size θ ∈ R. The study effects
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are assumed to be uncorrelated conditionally on the sampling variances:

(Y1, σ
2
1), . . . , (Yn, σ

2
n) independent

E(Y1, . . . , Yn | σ2
1, . . . , σ

2
n) = θ1n

Var(Y1, . . . , Yn | σ2
1, . . . , σ

2
n) = diag(σ2

1, . . . , σ
2
n).

(1)

The study variances σ2
j are usually treated as fixed, with analyses carried out condition-

ally, but we will also consider random ~σ in the formulation of certain results (Michael and
Ghebremichael, 2023; Lin and Chu, 2018). The random framework is useful for analyzing
settings where the study effects and study variances are stochastically dependent irrespective
of publishing bias, such as when the study effects are measured in the log odds ratio. The
typical number of studies, n, depends on the area of research and can be small (Davey et al.,
2011). Model (1) is known as the “fixed-effects” meta-analysis model to distinguish it from
models in which the common effect θ is treated as random.

The goal of inference in a meta-analysis is the mean effect size θ. The most common
estimator is the weighted sample average of the study effects, with weights given by the
study precisions 1/σ2

1, . . . , 1/σ
2
n,

θ̂ =

∑n
j=1 Yj/σ

2
j∑n

j=1 1/σ2
j

.

Conditionally on ~σ, the estimator θ̂ is an unbiased estimator of θ with variance σ2
θ̂

=

Var(θ̂ | ~σ) = (
∑

j 1/σ2
j )
−1. In carrying out a meta-analysis the usual procedure is to refer

(θ̂−θ)/σθ̂ to a standard normal distribution (Konstantopoulos and Hedges, 2019). Sufficient
conditions for asymptotic normality are given as part of Theorem 3 below.

2.2 Description of Egger’s and Begg’s tests for publication bias

Egger’s and Begg’s tests both test for the presence of publication bias on the basis of the
relationship between reported study effects and variances. The premise appears to be that
the net effect of selective publication will be a trend between corresponding effects and
variances, such as by publication favoring a very precise estimate of an unremarkable effect,
or an imprecise estimate of a remarkable effect. See Sterne et al. (2011) for further discussion
of this premise, and see Peters et al. (2008) for alternative approaches.

Egger’s procedure tests the null of a zero constant coefficient in the simple linear regres-
sion of Y/σ against 1/σ. Under model (1), E(Yj/σj | σj) = θ/σj and Var(Yj/σj | σj) = 1.
Therefore,

yj/σj = β0 + β1/σj + ε (2)

is a correctly specified linear model with independent homoscedastic errors ε and β0 = 0.
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The t-statistic for β0,

t̂ =
β̂0√

V̂ar(β̂0)

=

√
n− 1

RSS
n−1/2

1√
m2(m2 −m2

1)

∑
j

Yj/σj(m2 −m1/σj),

where mk =
n∑
j=1

1/σkj

(3)

may therefore serve as a consistent test statistic. The null of no publication bias is rejected
when |t̂| > tn−2,1−α/2.

Begg’s procedure tests the null that Yj is uncorrelated with σj, j = 1, . . . , n. The test
statistic is Kendall’s rank correlation coefficient,

τ̂ =

(
n

2

)−1∑
j<k

2 {(uj − uk)(vj − vk) > 0} − 1, (4)

applied to the sequence of pairs (uj, vj) given by

(uj, vj) =

 Yj − θ̂√
σ2
j − σ2

θ̂

, σj

 , j = 1, . . . , n.

where

θ̂ = (
n∑
j=1

Yj/σ
2
j )/(

n∑
j=1

1/σ2
j ),

σ2
θ̂

= 1/
n∑
j=1

(1/σ2
j ).

The test statistic counts the number of corresponding pairs of studentized effect sizes uj =

(Yj − θ̂)/
√
σ2
j − σ2

θ̂
and standard deviations vj = σj that concord in the sense that either

uj < uk and vj < vk or uj > uk and vj > vk. The null of no correlation is to be interpreted

as no publication bias, and is rejected at level α when
√

9n/4|τ̂ | > Φ−1(1− α/2).

2.3 Location invariance of publications bias tests

In this subsection, we offer a heuristic argument that a preliminary publication bias tests
should have little impact on a subsequent meta-analysis. There seems little reason to think
that the location of the grand mean of the data under analysis, θ in model (1), is relevant to
an assessment of the presence or absence of publication bias. Therefore, a desirable property
of hypothesis tests for publication bias is invariance to location shifts of θ. Both Egger’s and
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Begg’s tests satisfy the property. Shifting ~Y by θ′ ∈ R, ~Y 7→ ~Y + θ′1, the sum in Egger’s
statistic (3) is∑

i

(Yi + θ′)/σi(m2 −m1/σi) =
∑
i

Yi/σi(m2 −m1/σi) + θ′
∑
i

1/σi(m2 −m1/σi)

=
∑
i

Yi/σi(m2 −m1/σi) + θ′(nm1m2 − nm2m1)

=
∑
i

Yi/σi(m2 −m1/σi).

The RSS is also unchanged . Likewise, the Begg statistic (4) depends on Yi only through
the differences Yi − θ̂, which cancel out any shift. It is therefore unsurprising that the
test statistics for such hypothesis tests should not share much dependency with the meta-
analysis test statistic, which targets θ. The next sections show that the publication bias and
meta-analysis test statistics are indeed often independent or nearly so, with the result that
screening does not bias the outcome of meta-analyses.

(Although the test statistic is invariant to location shifts, an association between loca-
tion and test outcome may still be observable in practice. A shift in study effects may be
stochastically associated with a change in study variances, which may in turn affect the test
outcome. For example, Macaskill et al. (2001), report simulations suggesting an effect of
location on power when the study effects are measured by the log odds ratio. More gen-
erally, factors other than publication bias may lead to an association between study effects
and study variances, which is a known weakness of the common formal tests for publishing
bias (e.g., Rothstein et al. (2005), Chapter 5, or Borenstein et al. (2021), Chapter 30).)

3 Finite-sample, gaussian effect sizes

The study effects in (1) are often modeled as gaussian by appealing to the CLT, e.g., in
the original paper Begg and Mazumdar (1994). In this situation, the test statistics for
Egger’s and Begg’s tests are conditionally independent of the meta-analysis test statistic
given the primary study variances. It follows that the publication bias test statistics are
marginally orthogonal to the meta-analysis test statistic. There is therefore no harm of bias
in screening under conditional analyses with even a small number n of studies, provided
the gaussian assumption holds, besides the other meta-analysis and publication bias test
assumptions.

A simple connection between the publication bias test statistics and the meta-analysis
test statistics illustrates this result. The meta-analysis test statistic, θ̂ = (

∑
Yj/σ

2
j )/(

∑
σ2
j ),

may be viewed as the coefficient of the regression of ~Y
σ

on ~1
σ
. Therefore, ~Y

σ
− θ̂~1

σ
is orthogonal

to θ̂~1
σ
, and then, conditionally on ~σ, orthogonal to θ̂. Since the Begg statistic is a function

of ~Y
σ
− θ̂~1

σ
= (Y1−θ̂

σ1
, . . . , Yn−θ̂

σn
), it too is orthogonal to θ̂ given ~σ, when ~Y is gaussian.

As for Egger’s test, rewriting the Egger regression ~Y
σ

= β̂01+ β̂1
~1
σ

as

~Y

σ
− θ̂

~1

σ
= β̂01+ (β̂1 − θ̂)

~1

σ
,
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1

~1
σ

~Y
σ

β̂0

θ̂

Figure 1: Schematic description of the orthogonality of β̂0 and θ̂ in Egger regression. The

coefficient β̂0 is the length of a projection of ~Y
σ
−θ̂~1

σ
, which is orthogonal to θ̂~1

σ
. The regressors

~σ are treated as fixed.

it follows that the coefficient β̂0 used in Egger’s test may be obtained from the regression of
~Y
σ
− θ̂~1

σ
on
(
1, ~1

σ

)
. Therefore, β̂0 is a function of ~Y

σ
− θ̂~1

σ
which is orthogonal to θ̂~1

σ
and so to

θ̂, conditionally on ~σ. See Fig. 1. Theorem 1 formalizes this argument, using the gaussian
assumption to convert the orthogonality to independence.

Theorem 1. Assume

(Y1, . . . , Yn) | (σ2
1, . . . , σ

2
n) ∼ N (θ1, diag(σ2

1, . . . , σ
2
n)).

Then 1. t̂ ⊥⊥ θ̂ | σ1, . . . , σn and 2. τ̂ ⊥⊥ θ̂ | σ1, . . . , σn.

Corollary 2. Assuming

(Y1, . . . , Yn) | (σ1, . . . , σn) ∼ N (θ1, diag(σ2
1, . . . , σ

2
n)).

Cov(t̂, θ̂) = Cov(τ̂ , θ̂) = 0.

Proof. Cov(t̂, θ̂) = E Cov(t̂, θ̂ | ~σ) + Cov
(

E
(
t̂ | ~σ

)
,E
(
θ̂ | ~σ

))
. The first term is 0 by Theo-

rem 1 and the second since E
(
θ̂
∣∣∣~σ) = θ is constant.

In showing that the Egger statistic is independent, normality is only used to obtain
independence of the residual errors from the coefficient estimate. Writing

Cov(t̂,
√
nθ̂) = Cov

(
t̂

√
RSS

n− 2
,
√
nθ̂

)
+ Cov

(
t̂

(
1−

√
RSS

n− 2

)
,
√
nθ̂

)
,
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the first term is shown to be 0 in the first part of the proof, and the second is ordinarily
of order n−1/2. Therefore, under the general model (1), any correlation between the Egger
test statistic and meta-analysis test statistic vanishes as the number of studies grows. In
contrast, without the gaussian assumption Begg’s test statistic and the meta-analysis test
statistic may be correlated even in the limit, as Theorem 5 below shows.

4 Asymptotic, non-parametric study effects

We extend the analysis beyond gaussian study effects by considering the association between
the test statistics as the number of studies n grows.

Theorem 3. Assuming:

1. (Y1, . . . , Yn) | (σ1, . . . , σn) are independent with means 0 and variances σ2
1, . . . , σ

2
n

2. Existence and finiteness of µ1 = limn→∞m1 = limn→∞ n
−1∑n

j=1 1/σj

For some δ > 0,

3. supj E
(
Yj−θ
σj

)2+δ
<∞

4. m2 −m2
1 > δ

5.
∑

j (σjj)
−1−δ <∞

Then (
t̂,
θ̂ − θ
σθ̂

)∣∣∣∣∣σ1, . . . , σn  N (0, I).

Many IID data models meet the conditions of the theorem.

Corollary 4. Assuming: 1. (Y1, . . . , Yn) | (σ1, . . . , σn) are independent with means 0 and
variances σ2

1, . . . , σ
2
n. 2. ((Y1 − θ)/σ1, . . . , (Yn − θ)/σn) | (σ1, . . . , σn) follow a common

distribution such that for some δ > 0, E((Y −θ)/σ | σ)2+δ <∞. 3. The precisions S1, S2, . . .
are IID, non-constant, with a finite second moment. Then almost surely,(

t̂,
θ̂ − θ
σθ̂

)∣∣∣∣∣σ1, σ2, . . . , σn  N(0, I).

Proof. m2 −m2
1 → Var(S) almost surely, with 0 < Var(S) <∞, so almost surely there is a

random δ > 0 such that m2−m2
1 > δ. By a truncation argument (e.g., Ex. 2.3.25 of Dembo

(2016)) the assumed moment condition on S likewise implies
∑

j(Sj/j)
1+δ converges almost

surely for any 1 < δ ≤ 2.
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The corresponding analysis for Begg’s statistic is relatively complicated due to the statis-
tics σθ̂ and θ̂ common to the terms of the double sum (4). We impose several simplifying
assumptions. First, as noted in Section 2.3, τ̂ is invariant to shifting the location of the
study effects, ~Y 7→ ~Y + θ, so there is no loss in assuming θ = 0:

E(Y1, . . . , Yn | σ1, . . . , σn) = 0. (5)

Second, the O(1/n) terms σθ̂ are asymptotically negligible in many common situations
(Michael and Ghebremichael, 2023),

τ̂ =

(
n

2

)−1∑
j<k

2

{(
Yj − θ̂
σj

− Yk − θ̂
σk

)
(σj − σk) > 0

}
− 1 + oP (n−1/2). (6)

Next, let Zj = Yj/σj, j = 1, . . . , n, denote the standardized effect sizes. From (1), Var(Z) = 1
and by (5), E(Z) = 0. We further assume that Z1, . . . , Zn, follow a common distribution, i.e.,
the study effects Y1, . . . , Yn, belong to a scale family. Finally, we assume the study precisions
(S1, . . . , Sn) are IID. In summary,

Z1, . . . , Zn
IID∼ FZ

S1, . . . , Sn
IID∼ FS

Zj | Sj ∼ Zj,

Yj = Zj/Sj, j = 1, . . . , n.

(7)

Rewritten in terms of the standardized effect sizes and their precisions, (6) is

τ̂ =

(
n

2

)−1∑
j<k

2

{
Zj − Zk
Sj − Sk

< θ̂

}
− 1 + oP (n−1/2). (8)

The double sum may be viewed as a U-statistic with estimated parameter θ̂ (Nolan and
Pollard, 1988). The estimate is ordinarily of order 1/

√
n and affects the asymptotics, and

Begg’s test, ignoring this effect, can be biased (Michael and Ghebremichael, 2023). The
following result includes the correct asymptotic distribution under the IID model (7).

Theorem 5. Assuming:

1. the IID model (7)

2. 0 < ES2 <∞

3.
∫∞
−∞ fZ(z)2dz <∞

Then ( √
nτ̂

(θ̂ − θ)/σθ̂

)
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is asymptotically normal with

Var(
√
nτ̂)→ 4

9
+

4 (E |S − S ′|)2

ES2
E(fZ(Z)) (E(fZ(Z))− 2 E(ZFZ(Z))) ,

Cov(
√
nτ̂ , (θ̂ − θ)/σθ̂)→

2 E |S − S ′|√
ES2

(E fZ(Z)− E(ZFZ(Z))) ,

Var((θ̂ − θ)/σθ̂)→ 1.

The theorem follows from a lemma given in Michael (2024) that, drawing on the theory
of U-processes (Nolan and Pollard, 1988), rewrites (8) as an asymptotically equivalent IID
sum to which the CLT may be applied. Let

Πτ̂(θ) : θ 7→ 2

(
1

n

n∑
j=1

2 P

(
Zj − Z
Sj − S

< θ | Zj, Sj
)
− 1

)
−
(

2 P

(
Z − Z ′

S − S ′
< θ

)
− 1

)
.

Lemma 6. Under the assumptions of Theorem 5,

√
nτ̂ =

√
n
(
θ̂2 E(fZ(Z)) E |S − S ′|+ Πτ̂(0)

)
+ oP (1)

The asymptotic covariance between τ̂ and θ̂ given in Theorem 5 depends on both the
distribution of the study precisions, through the parameter

E |S − S ′|√
ES2

, (9)

and that of the study effects, through the parameter

ζ(FZ) = E fZ(Z)− E(ZFZ(Z)).

The ratio (9) approaches 0 as the precision distribution approximates a nonzero constant.
A loose upper bound of

√
2 follows from (E |S − S ′|)2 ≤ E((S − S ′)2) = 2 Var(S) ≤ 2 E(S2).

Michael and Ghebremichael (2023) gives a tight upper bound of
√

2/3.
The parameter ζ(FZ) takes a larger range of values and also determines the sign of the

correlation, in turn determining whether the power of the subsequently conducted meta-
analysis will be too low or too high. For some distributions of Z, ζ is 0. For example,
for standard normal Z, E fZ(Z) = E(ZFZ(Z)) = 1/(2

√
π), and for centered and scaled

uniform Z, E fZ(Z) = E(ZFZ(Z)) = 1/(2
√

3). When the standardized effects follow these
distributions, Begg’s test does not bias the meta-analysis, under the conditions of Theorem
5.

In general, however, ζ may be arbitrarily large. In terms of the centered but not neces-
sarily scaled study effects Y = σZ,∫

fZ(z)2 = σ

∫
fY (y)2.

The expression on the right may blow up due to either factor σ or fY (y)2. An example of
the former is Student’s t. As the degrees of freedom p approach 2 from above, σ → ∞,
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while
∫
f 2
Y (y) ∝

∫
(1 + y2/p)1+p is bounded away from 0. An example of the latter is any

unbounded density that diverges faster than 1/
√
x, such as the “peaked” distribution,

fY (y) = |y|p on |y| <
(
p+ 1

2

) 1
p+1

, p > −1. (10)

For this density,
∫
f 2
Y (y) ∝

∫
|y|2p →∞ as p ↓ −1/2, while for p = −1/2, σ2 =

∫
y2fY (y) =

1/5(1/4)4. Another example is a centered, symmetric beta distribution with common shape
parameter p,

fY (y) =
(1/4− y2)p−1

B(p, p)
on |y| < 1/2, p > 0. (11)

Here
∫
f 2
Y (y) ∝ (1/4−y2)2(p−1) →∞ as p ↓ 1/2. While the density (10) is increasingly peaked

as
∫
f 2
Y (y) → ∞, with mass moving to the origin, the centered beta (11) is increasingly U-

shaped, with mass moving to ±1/2.
Though ζ → ∞ due either to σ → ∞ or E fY =

∫
f 2
Y (y) → ∞, the two possibilities say

different things about the operational characteristics of the publication bias tests. When σ
is large, the basic meta-analysis model (1) is nearly violated and there are other difficulties
with attempting a meta-analysis. For example, the fixed effects estimator θ̂ may have a poor
rate of convergence under the CLT. A large value of E fZ =

∫
f 2
Z poses problems specifically

for Begg’s test. Student’s t and the densities (10), (11), are examined using synthetic data
in Section 5.

When ζ is large, screening out data for which Begg’s test does not give a significant
result then affects in kind the positively correlated meta-analysis test statistic, reducing its
power. Very negative ζ, which would lead to poor FPR control on the meta-analysis, does
not appear to be as significant an issue.

Theorem 7. Let A denote the set of monotonic differentiable real-valued functions such
that limz→−∞ F (z) = 0, limz→∞ F (z) = 1,

∫
zF ′ = 0,

∫
z2F ′ = 1. Let lower-case f denote the

derivative F ′ for F ∈ A.

1. The functional F 7→
∫

(F ′(z))2dz =
∫
f(z)2 is convex on the set of differentiable func-

tions with square-integrable derivatives, and is minimized on A by f(z) ∝ 0∨ (1− z2),
with value 3/(5

√
5).

2. The functional F 7→
∫
zF (z)F ′(z)dz =

∫
zF (z)f(z)dz is concave on A and is maxi-

mized when f is a centered and scaled uniform distribution, with value 1/(2
√

3).

3. The functional F 7→
∫

(F ′(z))2dz−
∫
zF (z)F ′(z)dz = ζ(F ) is convex and is minimized

on A by f(z) of the form 0 ∨ a cosh(z/
√

2) + b, a, b ∈ R.

The first two parts of Theorem 7 imply a lower bound

ζ ≥ 3/(5
√

5)− 1/(2
√

3) ≈ −0.02. (12)

The values a, b, of the minimizer 0 ∨ a cosh(z/
√

2) + b in the third part do not appear to
have a closed form. Numerical methods give densities of this form for which ζ ≤ −0.19, so
the bound (12) is at worst loose by the hundredths place.
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5 Simulation

We use synthetic data to investigate the effect on a meta-analysis of conditioning the
data on a non-significant publication bias test outcome. First, a synthetic body of stud-
ies (Y1, σ1, . . . , Yn, σn) is generated under model (1). Next, Egger’s test for publication bias,

|t̂| > tn−2,1−α0/2

and Begg’s test for publication bias√
9n/4|τ̂ | > Φ−1(1− α0/2)

are carried out at significance level α0. Finally, the test for a non-zero grand mean in the
meta-analysis,

θ̂/σθ̂ > Φ−1(1− α1/2)

is carried out at significance level α1. The process is iterated 10, 000 times, giving a set
of 10, 000 triples of rejection indicators. With these we approximate the error rates of the
meta-analysis test conditional on not rejecting during the publication bias test.

5.1 Parameters of simulation

In generating the body of studies (Y1, σ1, . . . , Yn, σn) we considered three families for the

distribution of the responses ~Y :

1. Student’s t distributions with degrees of freedom ranging between (2, 6). When the de-
grees of freedom are large, the data approaches the gaussian model, in which Theorem
1 asserts the publication bias tests exert no influence on the meta-analysis distribution.
When the degrees of freedom approach 2, the variance blows up and the data approach
the boundary of the basic meta-analysis model (1).

2. The power law-type distribution (10), with the exponent p in the range (−1, 0]. When
the exponent is p = 0, the distribution is a centered and scaled uniform, for which
ζ = 0, with the peakedness about the origin increasing as p → −1. When p → −1/2,
ζ → ∞, posing difficulties for Begg’s test according to Theorem 5. For 1 < p ≤ .5,
the theorem is inapplicable as E fZ is not finite, and only perhaps suggestive of the
behavior of Begg’s test.

3. Symmetric and centered beta distributions (11), with common shape parameter p in
the range [.1, 1]. When p = 1, the distribution is again a centered and scaled uniform.
When p → 0, the density becomes increasingly U-shaped. For p < 1/2 Theorem 5 is
again only suggestive as E fZ is not finite.

In all cases, the distribution of the standard deviations was uniform on [1, 4], following Lin
and Chu (2018); see the Appendix for other choices. The meta-analysis sample size was
n = 25 or n = 75, following Begg and Mazumdar (1994), who based the choice on literature
reviews of the medical and social sciences literature, respectively. The grand mean θ was 0
or .2, with 0 representing the null case in the meta-analysis test. The significance level of
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the screening publication bias test α0 was 0.05 or 0.15 following recommendations in Egger
et al. (1997), Begg (1994), and elsewhere, while in all cases the level of the meta-analysis
test was α1 = .05, a standard recommendation (Konstantopoulos and Hedges, 2019).

5.2 Results of simulation

Main results are given in Tables 1a and 1b.

1. Student’s t distributions. The power of the meta-analysis is similar whether a publica-
tion bias test is used or not. That power is around the nominal rate when the degrees
are in the range 4–6 or larger, dropping as the degrees of freedom approach 2. The
drop is expected as model (1) does not hold for degrees of freedom ≤ 2. It is unrelated
to screening and attributable to the slow CLT convergence of averages such as θ̂ under
these distributions.

2. Power law-type distributions. The power of Begg’s test drops as the peakedness in-
creases, while Egger’s test is consistent. The behavior is expected from Theorem 5,
which shows the dependence of Cov(τ̂ , θ̂) on E fZ , and Theorem 3, which asserts that
t̂ and θ̂ are asymptotically independent.

3. Beta distributions. As with the power law-type distribution, the power of Begg’s test
drops relative to Egger’s test as the distribution becomes less uniform and increasingly
U-shaped. This result, too, is expected from Theorem 5, as the change in shape
corresponds to increasing E fZ .

In the problem area, i.e., Begg’s test for very peaked or very U-shaped distributions,
Tables 1a and 1b reveal two other contributors to lower power. The first is that the power
is poorer as the sample size increases. For example, for the most peaked power law-type
distribution in Table 1a, the power of Begg’s test drops from a reasonable .044 when n = 25
to .002 when n = 75. In contrast, for Student’s t, the power improves with sample size,
as the CLT approximation improves. Theorem 5 is qualitative in that it provides no rates
of convergence to the asymptotic covariance between τ̂ and θ̂. Evidently the asymptotic
covariance overstates the severity, particularly for the relatively small values of n typical of
meta-analyses. A more refined asymptotic analysis might offer a more accurate picture of
the finite sample behavior.

A second, less dramatic contributor to lower power is a larger nominal level for the
screening publication bias test α0. This effect is at odds with the frequent recommendation
to opt for higher nominal levels in testing for publication bias as a way to boost power
(Begg, 1994; Egger et al., 1997; Macaskill et al., 2001). The magnitude of a test statistic
being inversely related to the p-value, the magnitude of the publication bias test statistic
conditional on being ≥ α0 tends to be smaller as α0 is larger. Consequently the positively
correlated meta-analysis test statistic also tends to be smaller in magnitude, reducing the
power of the meta-analysis test. See Fig. 2.

Both of these “counterintuitive results” emerge in the simulation analysis conducted by
Schucany and Tony Ng (2006) in their investigation of the effect of screening for normality
with the Shapiro-Wilks test.
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Figure 2: The effect of the nominal level α0 of the publication bias screen on the monte carlo
mean of the meta-analysis test statistic.

6 Conclusion

The recommendation to test for publication bias before conducting a meta-analysis is ten-
tatively supported by many of the results presented here. The exceptions involve screening
on Begg’s test with nonnormal data, in which case the main effect is a loss of power of the
meta-analysis, arguably of less concern than a loss of FPR control. These conclusions of
course presuppose validity of the test assumptions, such as the idealized fixed-effects model.

When screening by Begg’s test does reduce the power of the subsequent meta-analysis,
it appears that larger sample sizes and using a larger nominal level in the publication bias
test both aggravate the issue. That the power decreases with sample size is an artifact of
our asymptotic theory, which predicts a more severe dependency than exhibited in finite
samples. It is possible that with other data-generating mechanisms the reverse trend occurs.

A lower nominal level is generally cautioned against as the two-stage testing procedure
involves accepting a narrow null hypothesis and power is desirable. One possible remedy
to choosing the appropriate level is to use the asymptotic conditional distribution of the
meta-analysis statistic implied by Theorem 5.

We give three avenues for further work. The foregoing analysis, relying on the fixed-
effects model, ignores the effect of heterogeneity in screening. Second, the analysis only
looks at the effect of screening on true nulls. The effect of screening when publication
bias is present but the generally under-powered publication bias test fails to identify is
the complementary analysis. This analysis requires a choice of model for publication bias.
Finally, another possible source of post-selection inference in conducting meta-analysis is the
test for heterogeneity. The effect of choosing which type of meta-analysis to conduct based
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fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.053 0.044 0.005 0.048 0.049 0.044 0.049 0.049 0.031

75 0.051 0.046 0.004 0.048 0.048 0.002 0.051 0.050 0.021
0.15 25 0.052 0.043 0.004 0.047 0.049 0.039 0.049 0.048 0.026

75 0.050 0.046 0.003 0.048 0.047 0.000 0.052 0.048 0.016
Egger 0.05 25 0.053 0.046 0.011 0.048 0.049 0.055 0.049 0.052 0.046

75 0.051 0.048 0.012 0.048 0.048 0.051 0.051 0.050 0.049
0.15 25 0.054 0.047 0.012 0.048 0.049 0.057 0.050 0.051 0.046

75 0.051 0.048 0.013 0.049 0.048 0.051 0.052 0.050 0.049
Unconditional 0.05 25 0.053 0.045 0.011 0.048 0.049 0.054 0.049 0.052 0.047

75 0.050 0.048 0.012 0.048 0.048 0.051 0.052 0.050 0.049
0.15 25 0.053 0.045 0.011 0.048 0.049 0.054 0.049 0.052 0.047

75 0.050 0.048 0.012 0.048 0.048 0.051 0.052 0.050 0.049

(a) θ = 0

fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.148 0.132 0.024 0.161 0.156 0.096 0.157 0.151 0.130

75 0.370 0.354 0.198 0.372 0.370 0.024 0.371 0.365 0.243
0.15 25 0.146 0.129 0.020 0.161 0.155 0.074 0.157 0.149 0.118

75 0.367 0.347 0.172 0.372 0.364 0.023 0.371 0.357 0.197
Egger 0.05 25 0.151 0.136 0.039 0.161 0.157 0.155 0.159 0.155 0.158

75 0.377 0.366 0.273 0.372 0.377 0.375 0.372 0.372 0.380
0.15 25 0.151 0.138 0.043 0.162 0.157 0.159 0.159 0.155 0.157

75 0.376 0.369 0.281 0.371 0.373 0.377 0.371 0.372 0.379
Unconditional 0.05 25 0.149 0.136 0.035 0.161 0.158 0.150 0.159 0.155 0.159

75 0.376 0.365 0.262 0.372 0.376 0.375 0.371 0.371 0.379
0.15 25 0.149 0.136 0.035 0.161 0.158 0.150 0.159 0.155 0.159

75 0.376 0.365 0.262 0.372 0.376 0.375 0.371 0.371 0.379

(b) θ = 0.2

Table 1. The observed false positive rate (1a) and power (1b) for meta-analyses conducted
subsequent to a null finding on Egger’s test or Begg’s test and, for a benchmark, without
any preliminary test. Three families were considered for the distribution fZ of the study
effects, versions of Student’s t, the power-law distribution, and beta distribution. From each
family, three distributions were used corresponding to a low, medium, or high value of ζ.
For Student’s t, the corresponding degrees of freedom were, respectively, 4, 3, and 2.1. For
the power-law family (10), the parameter was -.1, -.5, or -.9. For the beta family (11), the
common shape parameter was .9, .5, or .1.
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on the outcome of the preliminary heterogeneity test may influence the main analysis.
Software used to carry out the simulations described in Section 5 is available at the

author’s website.
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Proof of Theorem 1. 1. First, for gaussian ~Y , the residual sum of squares in the Egger
regression, RSS, is independent of β̂0. Second, RSS is also independent of θ̂ in light

of the remarks preceding the theorem, since ~1
σ

is in the column space of the Egger

regression. Third, E(t̂ | ~σ) = E

(
1/

√
Var(β̂0) | ~σ

)
E(β̂0 | ~σ) = 0 by OLS theory, since

the linear model (2) is correct. Therefore,

Cov(t̂, θ̂ | ~σ) = E(t̂θ̂ | ~σ)

= E

 β̂0θ̂√
Var(β̂0)

∣∣∣∣∣∣~σ


= E

 1√
Var(β̂0)

∣∣∣∣∣∣~σ
E

(
β̂0θ̂
∣∣∣~σ)

= E

 1√
Var(β̂0)

∣∣∣∣∣∣~σ
 1

n(m2 −m2
1)

1

m2

E

((∑
j

Yj/σj(m2 −m1/σj)

)∑
j

Yj/σ
2
j

∣∣∣∣∣~σ
)
,

while the second expectation is

E

((∑
j

Yj/σj(m2 −m1/σj)

)∑
j

Yj/σ
2
j

∣∣∣∣∣~σ
)

= Cov

(∑
j

Yj/σj(m2 −m1/σj),
∑
j

Yj/σ
2
j

∣∣∣∣∣~σ
)

=
∑
j

Cov(Yj/σj(m2 −m1/σj), Yj/σ
2
j | ~σ)

=
∑
j

1/σj(m2 −m1/σj) = 0.

2. As noted in the remarks preceding the theorem statement, Cov(~Y
σ
− θ̂~1

σ
, ~1
σ
) = 0. For

any j, then, Cov(Yj − θ̂, θ̂ | ~σ) = σ2
j Cov(Yj/σj − θ̂/σj, θ̂/σj | ~σ) = 0. Explicitly,

Cov(Yj − θ̂, θ̂ | ~σ) = Cov(Yj, θ̂ | ~σ)− Var(θ̂ | ~σ)

= Cov

(
Yj,

Yj/σ
2
j

nm2

∣∣∣∣~σ)− Var

(
Yj/σ

2
j

nm2

∣∣∣∣~σ)
=

1

nm2

− 1

nm2

= 0.

Since the data are gaussian, (y1 − θ̂, . . . , yn − θ̂) is independent of θ̂ given ~σ. Since τ̂
is a function of (y1 − θ̂, . . . , yn − θ̂) given ~σ, it too is conditionally independent of θ̂.
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Proof of Theorem 3. First the Cramer-Wold device is used to show(√
RSS

n− 1
t̂,
θ̂ − θ
σθ̂

)
 N(0, I), (13)

from which it will follow that RSS/(n− 1)→p 1.
1. The random variables in the statement, re-written in terms of the study precisions

S1, . . . , Sn, are

t̂ =

√
n− 1

RSS
n−1/2

1√
m2(m2 −m2

1)

∑
j

YjSj(m2 −m1Sj)

=

√
n− 1

RSS
n−1/2

1√
m2(m2 −m2

1)

∑
j

(Yj − θ)Sj(m2 −m1Sj),

θ̂ − θ
σθ̂

=
1
√
m2

∑
j

(Yj − θ)S2
j .

Given a, b ∈ R, the linear combination

a

√
RSS

n− 1
t̂+ b

θ̂ − θ
σθ̂

= n−1/2
n∑
j=1

S2
j√
m2

(
a(m2/Sj −m1)√
m2(m2 −m2

1)
+ b

)
(Yj − θ)

has conditional mean and variance

E

(
a

√
RSS

n− 1
t̂+ b

θ̂ − θ
σθ̂
| ~σ

)
= 0

Var

(
a

√
RSS

n− 1
t̂+ b

θ̂ − θ
σθ̂
| ~σ

)
= a2 + b2.

It suffices to show that the linear combination is asymptotically normal, as (13) then follows
by the Cramer-Wold device. By the Lyapunov CLT, asymptotic normality follows if for some
δ > 0, given ~S,

n∑
j=1

E

∣∣∣∣∣n−1/2 S2
j√
m2

(
a(m2/Sj −m1)√
m2(m2 −m2

1)
+ b

)
(Yj − θ)

∣∣∣∣∣
2+δ

=
n∑
j=1

(
n−1/2

Sj√
m2

(
a(m2/Sj −m1)√
m2(m2 −m2

1)
+ b

))2+δ

E

∣∣∣∣Yj − θσj

∣∣∣∣2+δ

converges to 0. First, the terms E
∣∣∣Yj−θσj

∣∣∣2+δ are assumed bounded. Second, b
Sj√
m2
≤ b. Third,

m2 −m2Sj

m2

√
m2 −m2

1

=
1− m1

m2
Sj√

m2 −m2
1

≤ 1√
m2 −m2

1

.
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Therefore,

n∑
j=1

(
n−1/2

Sj√
m2

(
a(m2/Sj −m1)√
m2(m2 −m2

1)
+ b

))2+δ

≤
n∑
j=1

(
n−1/2

(
b+

1√
m2 −m2

1

))2+δ

≤
n∑
j=1

(n−1/2(b+ 1/δ))2+δ

= (b+ 1/δ)2+δn−δ/2 → 0.

2. In terms of the precisions,

RSS

n
= Y 2S2 − (Y S)2 − (Y S2 −m1Y S)2

m2 −m2
1

.

Let µk = limn→∞
1
n

∑n
j=1 S

k
j for k = 1, 2. Show RSS

n
→p 1 by showing a. Y 2S2 →p 1 + θ2µ2,

b. Y S →p θµ1, and c. Y S2 →p θµ2. In all 3 cases we use a variant of the LLN (e.g., Chapter
2, Ex. 4.5, of Rao (1973)): Given independent integrable RVs X1, X2, . . . , and δ > 0 such

that
∑

j E |(Xj − EXj)/j|1+δ<∞, conclude
∣∣∣ 1n∑n

j=1Xj − 1
n

∑n
j=1 EXj

∣∣∣→a.s. 0.
a.

E
(
(YjSj)

2 − (1 + θ2S2
j )
)1+δ

= E
(
((Yj − θ)Sj)2 + 2θ(Yj − θ)S2

j − 1
)1+δ

≤ 21+δ

(
E

(
Yj − θ
σj

)2(1+δ)

+ (2θSj)
1+δ E

(
Yj − θ
σj

)1+δ

+ 1

)
.

As supj E
(
Yj−θ
σj

)2+δ
is assumed finite for some δ > 0, the same holds for supj E

(
Yj−θ
σj

)1+δ
,

and it is assumed that
∑

j(Sj/j)
1+δ <∞.

b. With δ = 2,
∑

j E |(yjSj − θµ1)/j|1+δ =
∑

j Var(YjSj) =
∑

j 1/j2 < ∞, so ys →a.s.

θµ1.
c. ∑

j

E
∣∣(YjS2

j − θS2
j )/j

∣∣1+δ =
∑
j

(Sj/j)
1+δ E

∣∣∣∣Yj − θσj

∣∣∣∣1+δ <∞
as before.

Proof of Theorem 7. 1. For λ ∈ [0, 1],

λ

∫
f 2 + (1− λ)

∫
g2 −

∫
(λf + (1− λ)g)2 = λ(1− λ)

∫
(f − g)2 ≥ 0.

For the minimization, see, e.g., Chapter 14, Ex. 8, of Van der Vaart (2000).
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2. For λ ∈ [0, 1], F,G ∈ A,∫
z(λF + (1− λ)G)(λf + (1− λ)g)− λ

∫
zFf − (1− λ)

∫
zGg

= −λ(1− λ)

∫
z(f − g)(F −G)

= −λ(1− λ)

(
z

2
(F −G)2

∣∣∣∞
−∞
− 1

2

∫
(F −G)2

)
=

1

2
λ(1− λ)

∫
(F −G)2 ≥ 0.

For the maximization,

∫ ∞
−∞

zF (z)f(z) =

∫ ∞
−∞

z

(
F (z)− 1

2

)
f(z) ≤

(∫ ∞
−∞

(
F (z)− 1

2

)2

f(z)

) 1
2

=
1

2
√

3
,

and this bound is achieved by a centered and scaled uniform, fZ(z) = {−1/2 ≤ σz ≤
1/2}σ, σ = 1/(2

√
3).

3. Convexity follows from the previous parts since the sum of convex functions is convex.

The variational calculus gives a stationary point for F 7→ ζ(F ) subject to
∫
zf(z) =

0,
∫
f(z) =

∫
z2f(z) = 1. The Euler-Lagrange equation is 2F ′′ − F = λ1 + λ2z, with

general solution of the form

F (z) = a1e
z/
√
2 + a2e

−z/
√
2 + λ1 + λ2z

f(z) = (a1e
z/
√
2 − a2e−z/

√
2)/
√

2 + λ2, a1, a2, λ1, λ2 ∈ R.

The objective ζ is unchanged under F (·) 7→ 1 − F (−·), i.e., negating the random
variable Z. Since ζ is convex, any minimal value must then occur at the distribution
of a symmetric random variable, implying that a1 = a2 and the density has the form

f(z) = a cosh(z/
√

2) + b, a, b ∈ R.
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fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.050 0.048 0.010 0.052 0.050 0.047 0.050 0.047 0.033

75 0.051 0.049 0.011 0.050 0.049 0.016 0.050 0.051 0.024
0.15 25 0.049 0.048 0.010 0.052 0.051 0.044 0.049 0.047 0.028

75 0.051 0.049 0.011 0.050 0.048 0.010 0.050 0.051 0.016
Egger 0.05 25 0.050 0.048 0.011 0.052 0.050 0.053 0.050 0.047 0.048

75 0.051 0.049 0.012 0.050 0.049 0.054 0.050 0.051 0.051
0.15 25 0.050 0.049 0.011 0.052 0.050 0.053 0.050 0.047 0.047

75 0.051 0.049 0.012 0.050 0.049 0.053 0.051 0.052 0.052
Unconditional 0.05 25 0.050 0.048 0.011 0.052 0.051 0.053 0.050 0.047 0.048

75 0.051 0.049 0.012 0.050 0.049 0.054 0.050 0.052 0.051
0.15 25 0.050 0.048 0.011 0.052 0.051 0.053 0.050 0.047 0.048

75 0.051 0.049 0.012 0.050 0.049 0.054 0.050 0.052 0.051

(a) θ = 0

fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.163 0.151 0.040 0.173 0.172 0.131 0.171 0.170 0.141

75 0.407 0.402 0.313 0.411 0.403 0.143 0.414 0.408 0.312
0.15 25 0.163 0.152 0.040 0.171 0.171 0.116 0.171 0.167 0.125

75 0.408 0.403 0.312 0.411 0.402 0.099 0.415 0.406 0.279
Egger 0.05 25 0.162 0.151 0.042 0.172 0.172 0.162 0.171 0.171 0.172

75 0.408 0.402 0.317 0.412 0.404 0.413 0.414 0.411 0.409
0.15 25 0.163 0.151 0.042 0.171 0.173 0.162 0.171 0.170 0.172

75 0.408 0.402 0.319 0.411 0.404 0.416 0.414 0.409 0.407
Unconditional 0.05 25 0.163 0.151 0.042 0.173 0.172 0.162 0.171 0.171 0.172

75 0.407 0.402 0.317 0.411 0.404 0.413 0.414 0.411 0.409
0.15 25 0.163 0.151 0.042 0.173 0.172 0.162 0.171 0.171 0.172

75 0.407 0.402 0.317 0.411 0.404 0.413 0.414 0.411 0.409

(b) θ = 0.2

Table 2. Replication of the simulation discussed in Section 5 and reported in Table 1,
using a beta distribution to model the study precisions rather than the uniform distribution
used there. The beta distribution was chosen to be symmetric about its mean and peaked,
modeling many studies of similar precision. The results are largely consistent with those
discussed in Section 5.
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fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.050 0.044 0.006 0.046 0.049 0.054 0.047 0.043 0.031

75 0.049 0.044 0.003 0.049 0.052 0.008 0.049 0.045 0.026
0.15 25 0.050 0.043 0.005 0.046 0.048 0.050 0.047 0.042 0.025

75 0.048 0.043 0.002 0.049 0.052 0.003 0.049 0.045 0.019
Egger 0.05 25 0.048 0.042 0.010 0.047 0.049 0.054 0.047 0.045 0.043

75 0.047 0.044 0.009 0.050 0.052 0.051 0.049 0.047 0.048
0.15 25 0.047 0.040 0.010 0.047 0.049 0.052 0.049 0.046 0.044

75 0.046 0.043 0.009 0.050 0.052 0.048 0.050 0.048 0.048
Unconditional 0.05 25 0.050 0.046 0.012 0.046 0.049 0.061 0.047 0.044 0.042

75 0.049 0.048 0.012 0.049 0.052 0.055 0.049 0.046 0.047
0.15 25 0.050 0.046 0.012 0.046 0.049 0.061 0.047 0.044 0.042

75 0.049 0.048 0.012 0.049 0.052 0.055 0.049 0.046 0.047

(a) θ = 0

fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.126 0.110 0.016 0.136 0.131 0.093 0.133 0.129 0.115

75 0.275 0.258 0.086 0.290 0.284 0.010 0.288 0.283 0.174
0.15 25 0.124 0.108 0.013 0.134 0.130 0.084 0.131 0.126 0.107

75 0.270 0.249 0.068 0.289 0.279 0.003 0.287 0.278 0.127
Egger 0.05 25 0.125 0.114 0.029 0.137 0.132 0.124 0.134 0.133 0.140

75 0.280 0.272 0.172 0.291 0.291 0.268 0.293 0.294 0.300
0.15 25 0.125 0.112 0.034 0.139 0.133 0.123 0.136 0.134 0.142

75 0.276 0.270 0.174 0.293 0.290 0.264 0.296 0.297 0.304
Unconditional 0.05 25 0.127 0.113 0.024 0.137 0.132 0.122 0.134 0.133 0.140

75 0.280 0.272 0.134 0.290 0.288 0.274 0.288 0.290 0.295
0.15 25 0.127 0.113 0.024 0.137 0.132 0.122 0.134 0.133 0.140

75 0.280 0.272 0.134 0.290 0.288 0.274 0.288 0.290 0.295

(b) θ = 0.2

Table 3. Replication of the simulation discussed in Section 5 and reported in Table 1,
using the log normal distribution to model the study precisions rather than the uniform
distribution used there. The log normal distribution was chosen to be right skewed, modeling
many studies with low precision and a few with high precision. As when using a peaked
distribution for the study precisions (Table 2), the results here are largely consistent with
those discussed in Section 5.
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fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.028 0.020 0.000 0.042 0.042 0.017 0.046 0.045 0.033

75 0.034 0.023 0.001 0.044 0.041 0.000 0.045 0.048 0.021
0.15 25 0.029 0.020 0.000 0.042 0.043 0.012 0.045 0.044 0.030

75 0.033 0.022 0.001 0.044 0.042 0.000 0.045 0.048 0.018
Egger 0.05 25 0.029 0.020 0.001 0.043 0.042 0.025 0.046 0.045 0.049

75 0.035 0.023 0.001 0.044 0.042 0.033 0.045 0.049 0.050
0.15 25 0.030 0.020 0.000 0.043 0.043 0.026 0.046 0.046 0.049

75 0.033 0.022 0.001 0.044 0.042 0.033 0.045 0.048 0.049
Unconditional 0.05 25 0.028 0.020 0.000 0.042 0.042 0.025 0.046 0.046 0.050

75 0.035 0.023 0.001 0.044 0.041 0.032 0.046 0.049 0.049
0.15 25 0.028 0.020 0.000 0.042 0.042 0.025 0.046 0.046 0.050

75 0.035 0.023 0.001 0.044 0.041 0.032 0.046 0.049 0.049

(a) θ = 0

fZ t Power Beta
Condition α0 n | ζ low med high low med high low med high
Begg 0.05 25 0.114 0.107 0.018 0.140 0.129 0.050 0.143 0.149 0.118

75 0.336 0.329 0.185 0.361 0.347 0.017 0.350 0.353 0.236
0.15 25 0.111 0.104 0.015 0.142 0.128 0.035 0.139 0.145 0.111

75 0.331 0.317 0.155 0.358 0.339 0.010 0.349 0.348 0.199
Egger 0.05 25 0.115 0.110 0.025 0.140 0.130 0.111 0.143 0.152 0.150

75 0.341 0.340 0.253 0.361 0.353 0.334 0.350 0.360 0.363
0.15 25 0.114 0.109 0.028 0.142 0.131 0.113 0.142 0.152 0.146

75 0.343 0.336 0.256 0.357 0.350 0.331 0.351 0.361 0.364
Unconditional 0.05 25 0.116 0.110 0.022 0.141 0.131 0.109 0.144 0.153 0.150

75 0.344 0.340 0.242 0.358 0.355 0.335 0.354 0.358 0.364
0.15 25 0.116 0.110 0.022 0.141 0.131 0.109 0.144 0.153 0.150

75 0.344 0.340 0.242 0.358 0.355 0.335 0.354 0.358 0.364

(b) θ = 0.2

Table 4. Replication of the simulation discussed in Section 5 and reported in Table 1,
using the random effects meta-analysis estimator with the DerSimonian-Laird estimate of
the between-study variance. The lower power levels compared to Table 1 is a known result
of using the random effects estimator. The same patterns observed in the fixed effects case
reported in Section 5 may be observed in the random effects case.
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