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Abstract

•We consider estimating the parameter β of a
Marginal Structural Mean Model:

E(Ya) = µ(a; β)
•Assuming there are no unmeasured
confounders (“SRA”), [1] estimates β as the
solution to a standard estimating equation
suitably re-weighted

•We relax SRA and use IVs to identify and
estimate β

Introduction

Notation:
•J time points j = 1, . . . , J
•Treatment process a = (a1, . . . , aJ) ∈ {0, 1}J

•Counterfactual outcomes Ya, indexed by
treatment

•Observed outcome Y = ∑
a 1{A = a}Ya

•Observed covariates L = (L1, . . . , LJ)
•Unobserved covariates U = (U1, . . . , UJ
• Instrumental variables Z = (Z1, . . . , ZJ)
An MSMM is a model on the mean of the potential
outcomes:

E(Ya) = µ(a; β)

The parameter β is not in general identified. [1]
provides a sufficient condition for identification, the
Sequential Randomization Assumption:

Y a ⊥⊥ A(j) | A(j − 1) = a(j − 1), L(j).
Now suppose there is an unmeasured confounder
U1, . . . , UJ of the association between the treatment
regimeA and the potential outcome Ya, so that SRA
is not warranted. We use instrumental variables to
identify and estimate the parameter. Informally, an
IV is a random variable independent of the unob-
served confounder but not independent of the covari-
ate of interest. Equipped with a further assumption
on the “compliance type” of the observations, we
identify the causal parameter as the solution to a
weighted estimating equation, similar to [1]. This
result leads to a simple estimator for the causal pa-
rameter.

Assumptions

•We relax SRA with “Latent SRA”, stating that the potential outcome and treatment are independent
provided some unobserved confounder U is observed:

SRA ⇒ Latent SRA
Y a ⊥⊥ A(j) | A(j − 1) = a(j − 1), L(j) ⇒ Y a ⊥⊥ A(j) | A(j − 1) = a(j − 1), L(j), U(j), Z(j)

•Our main assumption is that either compliance type is independent of the unobserved confounder U
(Independent Compliance Type):
E
[
A(j)|U(j), L(j), A (j − 1) , Z(j − 1), Z(j) = 1

]
− E

[
A(j)|U(j), L(j), A (j − 1) , Z(j − 1), Z(j) = 0

]
= δj

(
L(j), A (j − 1) , Z (j − 1)

)
OR that the causal effect is independent of unmeasured confounders: (Independent Causal Effect):

Yaj−1,1 − Yaj−1,0 ⊥⊥ U j | Lj, Aj−1, Zj−1

•We also make common IV assumptions:
1. Z(j) 6⊥⊥ A(j) | A(j − 1), L(j), Z (j − 1) IV Relevance
2.
(
U, Y a

)
⊥⊥ Z(j)|A(j − 1) = a(j − 1), L(j), Z(j − 1) IV Independence

3. 0 < P(Z(j) = 1|A(j − 1), L(j), Z(j − 1)) < 1 Positivity

Weighted Estimating Equation

Define weights by
W =

J∏
j=1

(−1)1−ZjδjfZj(Zj | Aj−1, Zj−1Lj−1).

Let h denote a vector-valued function of A of the same dimension as β. Under the above assumptions,

E
(
h(A)(Y − µβ(A))/W

)
=
∑
a
h(a) (E(Ya)− µβ(a)) (−1)J−

∑
j aj = 0

Simulation

J=2 J=3 J=4

Mean bias versus sample size of the weighted estimator, for J=2, 3, and 4, time points, compared with oracle (weights including
observed and unobserved confounders), SRA (weights including observed confounders), and associational (no weighting) estimators.

Additional Information

•The bootstrap or sandwich variance estimate may
be used to carry out inference

•Straightforward extension to discrete-valued
treatments A under the “Independent
Compliance Assumption”, though not under the
“Independent Causal Effect” assumption

•The terms δj the density fZ require√
n-consistent estimation

•Weights may be “stabilized” to the extent that
the terms δj depend on the treatment process A,
similar to IPW stabilization [1]

See the technical report [2] for the general case, cov-
ering any Marginal Structural Model, i.e., any re-
striction on the distribution of the potential outcome
Ya, including failure times. A semiparametric effi-
cient and multiply robust estimator is also provided
there.
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