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1. INTRODUCTION

The random effects model is often used to account for between-study heterogeneity when

conducting a meta-analysis. When the distribution of the primary study treatment effect esti-

mates is approximately normal, the simple normal-normal model is commonly used, and the

DerSimonian-Laird (“DL”) method and its variations are the most popular approach to estimat-

ing the model’s parameters and performing statistical inference (DerSimonian & Laird, 1986).

However, the DL method is based on an asymptotic approximation and its use is only justified

when the number of studies is large. In many fields, the number of studies used in a meta-analysis

or sub-meta-analysis rarely exceeds 20 and is typically fewer than 7 (Davey et al., 2011), leaving

inferences based on the DL estimator questionable. Indeed, extensive simulation studies have

C© 2016 Biometrika Trust
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found that the coverage probability of the DL-based confidence interval (CI) can be substantially

lower than the nominal level in various settings (Kontopantelis et al., 2010; IntHout et al., 2014),

leading to false positives. One reason for the failure of the DL method is that the asymptotic

approximation ignores the variability in estimating the heterogeneous variance, which can be

substantial when the number of studies is small (Higgins et al., 2009).

Various remedies have been proposed to correct the under-coverage of DL-based confidence

intervals. Hartung & Knapp (2001) proposed an unbiased estimator of the variance of the DL

point estimator explicitly accounting for the variability in estimating the heterogenous variance.

Sidik & Jonkman (2006) used the heavy-tailed t-distribution to approximate the distribution of a

modified Wald-type test statistic based on the DL estimator. Using the more robust t- rather than

normal distribution has also been proposed (Berkey et al., 1995; Raghunathan, 1993; Follmann

& Proschan, 1999). Hardy & Thompson (1996); Vangel & Rukhin (1999); Viechtbauer (2005);

and Raudenbush (2009) proposed procedures based on maximum-likelihood estimation. Noma

(2011) further improved the performance of the likelihood-based inference procedure when the

number of study is small by using a Bartlett-type correction. Bayesian approaches incorporat-

ing external information have been developed by many authors (Smith et al., 1995; Higgins &

Whitehead, 1996; Bodnar et al., 2017). However, with few exceptions, most of these methods

still depend on an asymptotic approximation and their performance with very few studies has

only been examined by specific simulation studies. To overcome these difficulties, potentially

conservative but “exact” inference procedures for the random effects model have been proposed

(Follmann & Proschan, 1999; Wang et al., 2010; Liu et al., 2017) and Wang & Tian (2017). A

permutation rather than the asymptotic limiting distribution is used to approximate the distribu-

tion of the relevant test statistics and thus the validity of the associated inference is guaranteed

for any number of studies. However, due to the discreteness of the permutation distribution, the
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highest significance level that may be achieved without randomization depends on the number

of studies. For example, a 95% confidence interval can only be constructed with more than 5

studies.

The main contribution of this paper is to propose a set of new methods for constructing exact,

unconditional, non-randomized CIs for the location parameter of the normal-normal model by

inverting exact tests. The coverage level of the resulting CI is guaranteed to be above the nominal

level, up to Monte Carlo error, as long as the meta-analysis contains more than 1 study. After

employing several techniques to accelerate computation, the new CI can be easily constructed

on a personal computer. Simulations suggest that the proposed CI typically is not overly con-

servative. In Section 2, we present our procedure for constructing exact CIs for the population

mean; in Section 3, we report results from comprehensive simulation studies; in Section 4, we

illustrate the proposed method with a real data example; and in Section 5 we conclude the paper

with additional discussion.

2. METHOD

The observed data consist of Y0 = {Yk, k = 1, · · · ,K} , where Yk follows a random effects

model,

Yk | θk
ind.
∼ N(θk, σ

2
k), θk

ind.
∼ N(µ0, τ

2
0), k = 1, · · · ,K,

with the variances σk > 0, k = 1, . . . ,K, assumed known.The random effects model implies The

simple parametric model

Yk
ind.
∼ N(µ0, σ

2
k + τ2

0), k = 1, · · · ,K. (1)

In the context of a meta-analysis, the pairs (Yk, σ
2
k), k = 1, . . . ,K, are interpreted as observed

effects and known within-study variances drawn from K studies, respectively. The unobserved
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population effect and between-study variance are µ0 and τ2
0, respectively. The goal is inference

on the location parameter µ0, viewing τ2
0 as a nuisance parameter. The typical number of studies

depends on the area of research and can be small, e.g., K ≤ 10.

With τ2
0 known, the uniformly minimum variance unbiased estimator of µ0 under (1) is given

by ∑K
k=1 Yk(τ2

0 + σ2
k)−1∑K

k=1(τ2
0 + σ2

k)−1
.

As τ2
0 is unknown, DerSimonian & Laird (1986) propose substituting a simplified method of

moments estimator,

τ̂2
DL = max

0,
∑K

k=1(Yk − µ̂F)2/σ2
k − (K − 1)∑K

k=1 σ
−2
k −

∑K
k=1 σ

−4
k∑K

k=1 σ
−2
k

 ,
where

µ̂F =

∑K
i=1 Ykσ

−2
k∑K

i=1 σ
−2
k

is the minimum variance unbiased estimator of µ0 under a fixed effects model, i.e., when τ2
0 = 0.

The resulting estimator is known as the “DerSimonian-Laird” estimator of µ0:

µ̂DL =

∑K
k=1 Yk(τ̂2

DL + σ2
k)−1∑K

k=1(τ̂2
DL + σ2

k)−1
.

By an analogous substitution, a level 1 − α confidence interval for µ0 is given byµ̂DL − z1−α/2

 K∑
k=1

(τ̂2
DL + σ2

k)−1


−1/2

, µ̂DL + z1−α/2

 K∑
k=1

(τ̂2
DL + σ2

k)−1


−1/2 . (2)

The justification of the CI given in (2) relies on the asymptotic approximation

T0(µ0;Y) = (µ̂DL − µ0)2
K∑

k=1

(τ̂2
DL + σ2

k)−1  χ2
1 (3)

as the number of studies, K, grows to infinity and max{σk}/min{σk} is uniformly bounded.

However, when K is moderate or small, the distribution of T0(µ0;Y) depends on τ2
0 and may be

very different from a χ2
1 distribution. Consequently, the finite-sample performance of the CI given
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by (2) is often unsatisfactory. We propose constructing an exact CI for µ0 by first constructing

an exact confidence region for (µ0, τ
2
0). To this end, let T

{
(µ, τ2);Y0

}
denote a test statistic,

which may depend on the null parameter (µ, τ2), for the simple hypothesis (µ0, τ
2
0) = (µ, τ2). The

specific choice of T
{
(µ, τ2);Y0

}
will be discussed later and here we only assume that a high

value of T
{
(µ, τ2);Y0

}
represents grounds for rejection. For a given choice of T

{
(µ, τ2);Y0

}
, a

1 − α level CI for µ0 can be constructed as follows:

1. Obtain bounds [µmin, µmax] and [τ2
min, τ

2
max] for µ0 and τ2

0.

2. For each pair of µ and τ2 in an R × R grid of points on [µmin, µmax] × [τ2
min, τ

2
max],

a. Compute the null distribution of T
{
(µ, τ2);Y0

}
, i.e., the distribution of

T
{
(µ, τ2);Y(µ, τ2)

}
, where

Y(µ, τ2) =
{
Ỹk, k = 1, · · · ,K

}
with Ỹk

ind.
∼ N(µ, σ2

k + τ2), k = 1, · · · ,K.

b. Compute the p-value pµ,τ2(Y0) := P
[
T

{
(µ, τ2);Y0

}
> T

{
(µ, τ2);Y(µ, τ2)

}]
.

3. Obtain a confidence region for (µ0, τ
2
0) as Ω1−α(Y0) := {(µ, τ2) : pµ,τ2(Y0) > α}.

4. Project Ω1−α(Y0) onto the µ axis to obtain a CI for µ0 : {µ : (µ, τ2) ∈ Ω1−α(Y0)}.

This method generates the exact CI for µ0 in the sense that

pr
(
µ0 ∈ {µ : (µ, τ2) ∈ Ω1−α(Y0)}

)
≥ 1 − α.
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This is due to the fact that

pr
(
µ0 ∈ {µ : (µ, τ2) ∈ Ω1−α(Y0)}

)
≥pr

{
(µ0, τ

2
0) ∈ Ω1−α(Y0)

}
=pr

{
pµ0,τ

2
0
(Y0) ≥ α

}
=pr(U ≥ α) = 1 − α,

where the random variable U follows the unit uniform distribution. Here, we assume that τ0 ∈

[τ2
min, τ

2
max]. If τ2

min and τ2
max are chosen depending on the data in such a way that pr(τ2

min < τ
2 <

τ2
max) ≥ 1 − β, then the guaranteed coverage probability of the proposed CI is 1 − α − β ≈ 1 − α

for very small β.

The cumulative distribution function (CDF) of T
{
(µ, τ2);Y(µ, τ2)

}
may not be analytically

tractable, but it is well defined for any given grid point (µ, τ2) and can always be approximated

by a Monte Carlo simulation. To be specific, given (µ, τ2), we may approximate the distribution

of T
{
(µ, τ2);Y(µ, τ2)

}
in 2a as follows:

2a For b = 1, · · · , B,

a. Generate e∗1b, · · · , e
∗
Kb

ind.
∼ N(0, 1).

b. Let Y∗kb = µ + (σ2
k + τ2)1/2e∗kb, k = 1, · · · ,K, and let Y∗b ={

Y∗kb, k = 1, · · · ,K
}
.

c. Let T ∗b = T
{
(µ, τ2);Y∗b

}
be the corresponding test statistic based on the gen-

erated data Y∗b . The empirical distribution of {T ∗1 , · · · ,T
∗
B} can be used to

approximate the distribution of T
{
(µ, τ2);Y(µ, τ2)

}
.

Since the estimation of the null distribution in 2a does not depend on any asymptotic approxi-

mation, both the p-value, pµ,τ2(Y0), and the confidence region, Ω1−α(Y0), are “exact” if we can
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safely ignore the errors of the grid approximation and the Monte Carlo simulation above, which

can be controlled by increasing the grid density and B in step 2a, respectively.

Because the data Yk, k = 1, · · · ,K, are distributed as N(µ, σ2
k + τ2

0), k = 1, . . . ,K, whenever

the shifted data Yk − µ, k = 1, . . . ,K, are distributed asN(0, σk + τ2
0), k = 1 . . . ,K, we restrict our

focus to equivariant statistics (Lehmann & Romano, 2006), that is, T satisfying T
{
(µ, τ2);Y0

}
=

T
{
(0, τ2),Y0 − µ

}
, where Y0 − µ = {Yk − µ, k = 1, . . . ,K}. In this situation, testing the null H0 :

(µ0, τ
2
0) = (µ, τ2) based on the dataY0 is the same as testing the null H0 : (µ0, τ

2
0) = (0, τ2) based

on the shifted data Y0 − µ. When the test statistic is equivariant, the computations in step 2a

need only be performed once for each τ2 in the grid rather than each pair (µ, τ2). Thus, although

a 2-dimensional grid is used in the algorithm, the computational complexity remains linear in the

grid size, R. More specifically, steps 2–3 become:

2′. For each τ2 of an R-sized grid on [τ2
min, τ

2
max],

a. Compute the distribution of T
{
(0, τ2);Y(0, τ2)

}
.

b. Compute q1−α;τ2 , the 1 − α quantile of T
{
(0, τ2);Y(0, τ2)

}
.

c. Compute Ω1−α(τ2;Y0) = {(µ, τ2) | T
{
(µ, τ2);Y0

}
= T

{
(0, τ2);Y0 − µ

}
≥

q1−α;τ2}.

3′. Compute a (1 − α)-level confidence region for (µ0, τ
2
0) as

⋃
τ2∈[τ2

min,τ
2
max]

Ω1−α(τ2;Y0).

In this paper, we propose using the test statistics

T
{
(µ, τ2);Y0

}
= T0(µ;Y) + c0Tlik

{
(µ, τ2);Y

}
, (4)
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where T0(µ;Y) is the same Wald-type test statistic used in the Dersimonian-Laird procedure,

Tlik
{
(µ, τ2);Y

}
= −

1
2

K∑
k=1

 (Yk − µ̂DL)2

τ̂2
DL + σ2

k

+ log
{
2π(τ̂2

DL + σ2
k)
} +

K∑
k=1

1
2

 (Yk − µ)2

τ2 + σ2
k

+ log
{
2π(τ2 + σ2

k)
} ,

and c0 is a tuning parameter controlling the relative contributions of these two statistics. While

T0(µ;Y) directly focuses on the location parameter µ0, Tlik
{
(µ, τ2);Y

}
, similar to the likelihood

ratio test statistic, targets the combination of µ0 and τ2
0 and helps to construct a narrower CI

of µ0 when the number of studies is small. The proposed test statistics satisfy the equivariance

condition, ensuring speedy computation when carrying out the procedure on a typical personal

computer.

A further simplification afforded by this choice of test statistics is that step 2′c may be carried

out by solving a simple quadratic inequality:

A(τ)µ2
0 + B(τ)µ0 + C(τ) < 0,

where

A(τ) =

K∑
k=1

 1
τ̂2

DL + σ2
k

+
c0

2(τ2 + σ2
k)

 > 0,

B(τ) = −

K∑
k=1

 2µ̂0DL

τ̂0
2
DL + σ2

k

+
c0Yk

τ2 + σ2
k

 ,
C(τ) =

K∑
k=1

c0

2

 Y2
k

τ2 + σ2
k

+ log
τ2 + σ2

k

τ̂2
DL + σ2

k

−
(Yk − µ̂DL)2

τ̂2
DL + σ2

k

 + µ̂2
DL

K∑
k=1

1
τ̂2

DL + σ2
k

− q1−α;τ2 . (5)

As a result, the confidence interval of µ0 when τ0 = τ Ω1−α(τ2;Y0), is simply the segment with

endpoints

(
−B(τ) ± ∆1/2

2A(τ)
, τ2

)
,

when ∆(τ) = B(τ)2 − 4A(τ)C(τ) ≥ 0, and an empty set, otherwise.
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To choose τ2
min and τ2

max in step 1 of the algorithm, we may use the endpoints of a 100(1 − β)%,

e.g., 99.9%, confidence interval of τ2
0. This CI can be constructed by inverting the pivotal statistic

T3(τ2) = (WY)′
{
WΣ(τ)W′}−1 (WY),

where Y = (Y1, · · · ,YK)′, Σ(τ) = diag
{
σ2

1 + τ2, · · · , σ2
K + τ2

}
, and

W =



σ−2
1 /

∑K
i=1 σ

−2
i − 1 σ−2

2 /
∑K

i=1 σ
−2
i · · · σ−2

K /
∑K

i=1 σ
−2
i

σ−2
1 /

∑K
i=1 σ

−2
i σ−2

2 /
∑K

i=1 σ
−2
i − 1 · · · σ−2

K /
∑K

i=1 σ
−2
i

· · · · · · · · · · · ·

σ−2
1 /

∑K
i=1 σ

−2
i σ−2

2 /
∑K

i=1 σ
−2
i · · · σ−2

K /
∑K

i=1 σ
−2
i − 1


.

The pivot follows a χ2
K−1 distribution when τ2 = τ2

0.

Since our goal is a CI for µ0, the shape of the confidence region is crucial to its performance:

the projection of Ω1−α(Y0) onto the µ axis should be as small as possible, relative to the area

of the confidence region. Figure 1 plots two confidence regions with the same confidence co-

efficient, but substantially different projected lengths. To avoid an overly conservative CI, we

prefer a confidence region with boundaries parallel to the τ− axis, or nearly so. The shape of

Ω1−α(X0) is determined by the way we combine T0(µ;Y) and Tlik
{
(µ, τ2);Y

}
or, more generally,

by the choice of T
{
(µ, τ2);Y

}
. Because the proposed statistics (4) are quadratic in µ, the resulting

confidence regions are a union of intervals with similar centers and tend not to produce overly

conservative CIs when the tuning parameter c0 is chosen appropriately.

The proposed test statistic was chosen to balance performance and computation costs. For

example, the true likelihood ratio test statistic under model (1) may be more informative than

Tlik
{
(µ, τ2);Y

}
, but its evaluation involves computing the maximum likelihood estimate and is

substantially slower. The proposed algorithm is easily parallelized, so further gains in computing

speed are available.
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Fig. 1: The projection of the confidence region; the solid and dashed thick lines are boundaries

of two confidence regions.

Remark 1. Projecting the confidence region parallel to the direction of the nuisance param-

eter is a geometric interpretation of a well-known approach to constructing non-randomized,

unconditional, exact tests in the presence of nuisance parameters. In general, given a parame-

ter of interest, θ, and nuisance parameter, η, let pθ,η(Y0) denote the p-value for testing the null

hypothesis H0 : (θ0, η0) = (θ, η) conditional on the observed data, Y0 . An exact level α test for
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the composite null hypothesis H0 : θ0 = θ rejects the null if supη pθ,η(Y0) < α. This test is con-

servative by construction. A correspondingly conservative CI may be obtained by inversion as

{θ : supη pθ,η(Y0) > α} = {θ : pθ,η(Y0) > α for some η}, i.e., the projection described in (2). See,

e.g., Suissa & Shuster (1985) for an application to comparing proportions from two independent

binomial distributions.

3. NUMERICAL STUDY

In this section, we study the small-sample performance of the proposed method through a

comprehensive simulation study. Observed data are simulated under the random effects model

Yk ∼ N(µk, τ
2
0 + σ2

k), k = 1, · · · ,K,

where σ1, · · · , σK , are K equally spaced points in the interval [1, 5], that is, σk = 1 + 4(k −

1)/(K − 1), k = 1, · · · ,K. The population variance τ2
0 takes values 0, 12.5, and 25 to mimic

settings with low, moderate, and high study heterogeneity, respectively. The corresponding I2

measures of heterogeneity are approximately 0, 50%, and 70%, respectively.

In the first set of simulations, we examine the effect of the tuning parameter c0 on the per-

formance of the proposed method. For each set of simulated data, we construct a series of CIs

using the proposed method with c0 ranging from 0 to 2.5 in increments of 0.1, and the number

of studies K ranges from 3 to 20. Based on results from 10000 simulated datasets under each

combination of settings, we calculate the empirical coverage levels and average lengths of the

resulting 95% CIs. In all settings, the empirical coverage levels of the proposed CIs are above the

nominal level and therefore we optimize power by selecting the value of c0 with the shortest CI

lengths. When K ≥ 10, the choice of c0 does not have a pronounced effect on CI length. When K

is between 3 and 6, the setting of primary interest, assigning more weight to the likelihood ratio-

type statistic typically reduces the length of the CIs. We summarize the value of c0 achieving
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the minimum mean 95% CI length in Figure 2. Based on these results, we suggest for a tuning

parameter c0 = 1.2 for meta-analyses with fewer than 6 studies, c0 = 0.6 for meta-analysess with

6–10 studies, c0 = 0.2 for meta-analysis with 10-20 studies, and c0 = 0 for analysis with more

than 20 studies.

In the second set of simulations, we compare the performance of the proposed CIs with

existing alternatives. For 10000 replicates at each data-generation setting described above, we

construct CIs using the DerSimonian-Laird, Sidik-Jonkman, and restricted maximum likelihood

asymptotic variance estimates, as well as the proposed CI with the recommended tuning param-

eter. In Figure 3 we summarize the average coverage and lengths of these CIs. In the presence of

moderate heterogeneity, I2 = 0.5, the empirical coverage level of the DL method is below 90%

when K ≤ 10, with the lowest coverage ∼ 75% when the number of studies is 3. The CIs based

on the Sidik-Jonkman estimator have better coverage, but still drop below 90% when K ≤ 5. In

contrast, the proposed exact CIs using the recommended tuning parameter settings do not fall

below the nominal 95% coverage level. Morover, the coverage level is not overly conservative

even for small Ks. The length of the 95% CI is comparable to the lengths of the asymptotic CIs,

when these match the nominal coverage level, e.g., K = 20. When I2 = 0, i.e., the random effects

model degenerates to the fixed effects model, all methods, including the asymptotic estimators,

control the Type 1 error. Sidik-Jonkman’s CI is overly conservative even for moderate K values,

while the proposed CIs, also overly conservative at lower values of K, improve steadily as K

increases. When I2 = 0.70, only the proposed CIs maintain the proper coverage level, while all

methods fall below the nominal level for K as large as 10–20.

Several other estimators, including Hedges-Olkin, Hunter-Schmidt, and maximum likelihood,

were also tested, with performance found to be generally intermediate between the performance

of the DerSimonian-Laird and Sidik-Jonkman estimators.
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Fig. 2: The choice of c0 achieving the minimum mean 95% CI length is plotted against the

number K of studies, at 3 levels of between-study heterogeneity.

4. EXAMPLE

Tai et al. (2015) conduct a random effects meta-analysis of 59 randomized controlled trials to

determine if increased calcium intake affects bone mineral density (“BMD”). Altogether, these

trials measured the changes in BMD at five skeletal sites over three time points and measured
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Fig. 3: Comparison by 95% CI coverage and length of the proposed estimator with 3 commonly

used estimators based on asymptotic approximations. Data was generated according to model

(1) with the number of studies K varying between 3 and 20 and the ratio of between- to av-

erage within-variance adjusted to give 3 levels of between-study heterogeneity. The proposed

estimator achieves the nominal size at all configurations, with overcoverage evident where the

heterogeneity is low or the studies is very few (3–4).

the effect of calcium intake on BMD from dietary sources and from calcium supplements. We

illustrate the proposed method using four meta-analyses. The first meta-analysis investigates

changes in BMD of the lumbar spine and is based on the findings of 27 trials that lasted fewer

than 18 months. As shown in Table 1, the 95% CI produced by the proposed exact method does

not differ very much from the 95% CI based on the DL method. The two intervals have a similar
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length and are centered around a BMD difference of about 1.2. We also construct the exact CI

by permuting a Hodge-Lehman type estimator (Liu et al., 2017). The resulting interval is very

similar to the interval produced by the proposed method. These similarities are to be expected

since the normality assumptions of the DL estimator may not be too unreasonable for a meta-

analysis based on such a large number of primary studies.

Two of the other random effects meta-analyses investigate changes in BMD in the hip and

forearm for trials of size six and five, respectively, that lasted for more than two years. The

fourth analysis we consider here is the meta-analysis of three trials that lasted fewer than 18

months and measured changes in BMD for the total body of subjects. For these three meta-

analyses, however, the number of studies is small, and the DL method may be expected to fall

short of the nominal level. In the hip study, the proposed exact method and the DL method both

yield the same conclusion, producing 95% confidence intervals rejecting the null of no change

in BMD, although the exact method produces confidence intervals that are wider than their DL

counterparts. In contrast, the DL 95% confidence intervals for the forearm and total body studies

find a significant change in BMD whereas the exact method does not, suggesting that the DL

method may be giving a false positive in these two cases. The intervals and their lengths are

given in Table 1. Note that the exact 95% CI based on the permutation method is not available

for the last two meta analyses, since the number of studies is fewer than 6.

5. DISCUSSION

We have proposed a method to construct an exact CI for the population mean under the normal-

normal model commonly used in meta-analysis. Appropriate coverage is guaranteed, up to Monte

Carlo error, even when the number of studies used in the meta-analysis is as small as 2. While

convenient, the normal assumption for the study-specific treatment effect estimate may not be
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Study K DerSimonian-Laird Permutation Proposal

lumbar spine 27 0.828–1.669 (0.841) 0.788–1.758 (0.970) 0.768–1.726 (0.958)

total hip 6 0.502–1.847 (1.345) 0.000–2.298 (2.298) 0.159–2.246 (2.087)

forearm 5 0.209–3.378 (3.169) -0.459–4.124 (4.583)

total body 3 0.268–1.778 (1.511) -0.74–2.796 (3.536)

Table 1: Random effects meta-analyses of the effect of calcium supplements on percentage

change in bone mineral density (Tai et al. (2015), Figs. 1, 3, and 7). The meta-analyses were

carried out using the DerSimonian-Laird variance estimator (as in Tai et al. (2015)), the permu-

tation test of Wang & Tian (2017), applicable to meta-analyses with 6 or more studies, and the

proposed exact method. On the two smaller meta-analyses (K = 3, 5) the proposed exact method

fails to reject the null of no change, whereas the asymptotic DL method does reject.

valid in other settings. For example, the treatment effect estimate may be an odds ratio from a

2x2 contingency table. If the total sample sizes are small or if cell entries are close to 0, the nor-

mal assumption for the odds ratio may be inappropriate. More generally, Yk may be a quantity

relevant to a treatment effect with Yk|θk following a non-normal, e.g., hypergeoemtric, distri-

bution depending on the study-specific parameter θk. In such a case, the model for θk and the

corresponding inference procedure warrant further research. More recently, there have been sev-

eral new developments on confidence distribution and related generalized fiducial inference that

have facilitated new inference procedures for meta-analysis (Xie & Singh, 2013; Claggett et al.,

2014). These developments may also be promising directions for developing exact inference

procedures for meta-analysis.
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Routines in the R programming language for computing exact CIs for the population mean by

the method proposed here are available at:

https://github.com/haben-michael/rma-exact-pkg.
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