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SUMMARY 15

Robins (1998) introduced marginal structural models, a general class of counterfactual models
for the joint effects of time-varying treatments in complex longitudinal studies subject to time-
varying confounding. Robins (1998) established the identification of marginal structural model
parameters under a sequential randomization assumption, which rules out unmeasured confound-
ing of treatment assignment over time. The marginal structural Cox model is one of the most 20

popular marginal structural models to evaluate the causal effect of time-varying treatments on a
censored failure time outcome. In this paper, we establish sufficient conditions for identification
of marginal structural Cox model parameters with the aid of a time-varying instrumental variable,
when sequential randomization fails to hold due to unmeasured confounding. Our instrumental
variable identification condition rules out any interaction between an unmeasured confounder 25

and the instrumental variable in its additive effects on the treatment process, the longitudinal
generalization of the identifying condition of Wang & Tchetgen Tchetgen (2018). We describe
a large class of weighted estimating equations that give rise to consistent and asymptotically
normal estimators of the marginal structural Cox model, thereby extending the standard inverse
probability of treatment weighted estimation of marginal structural models to the instrumental 30

variable setting. Our approach is illustrated via extensive simulation studies and an application
to estimate the effect of community antiretroviral therapy coverage on HIV incidence.

Some key words: Causal inference; Survival analysis; Marginal structural models; Unmeasured confounding; Instru-
mental variable; Observational studies
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1. INTRODUCTION35

Robins (1998, 1999) introduced a new class of counterfactual models known as marginal
structural models that encode the joint causal effects of time-varying treatments subject to time-
varying confounding. Marginal structural models are particularly powerful as they estimate the
causal effects of time-dependent treatments in the presence of time-dependent confounders that
are affected by prior treatments. For identification of marginal structural model parameters,40

Robins (1998, 1999) relied on a sequential randomization assumption, also known as sequential
exchangeability, which rules out unmeasured confounding of treatment assignment over time.
Applications of marginal structural models abound in health and social sciences, for instance,
see Robins et al. (2000); Hernán et al. (2001); Cole & Hernán (2008); Cerdá et al. (2010).

Right-censored data are of common occurrence in epidemiologic studies where the clinical45

outcome may not always be observed due to censoring. In such settings, marginal structural mod-
els extend to time-dependent Cox models. Unlike standard time-dependent Cox models, marginal
structural Cox models (Hernán et al., 2000) allow for adjustment of time-varying confounders
through the use of inverse probability of treatment weighting, and thus can be utilized to estimate
the causal effects of time-varying treatments in the presence of time-varying confounders; see50

de Keyser et al. (2014); Karim et al. (2014); Ali et al. (2016) for recent applications of marginal
structural Cox models in clinical studies.

However, sequential randomization can seldom be guaranteed in observational studies, even
if one adjusts for a large number of covariates in an effort to make the assumption credible. The
instrumental variable method (Goldberger, 1972; Imbens & Angrist, 1994; Angrist et al., 1996;55

Wooldridge, 2010) is a well-known approach to estimate causal effects subject to unmeasured
confounding in observational studies. An instrumental variable is defined as a pre-treatment vari-
able that is independent of all unmeasured confounders, and does not have a direct causal effect
on the outcome other than through the treatment. In a double-blind placebo-controlled random-
ized trial, random assignment is a common example of an ideal instrumental variable for the60

causal effect of treatment when some patients fail to comply to assigned treatment, provided that
double-blinding is maintained. To our knowledge, Michael et al. (2020) were the first to consider
identification and estimation of marginal structural mean models in the context of a time-varying
treatment and a time-varying instrumental variable. However, additional challenges arise with
censored survival data, which were not addressed in Michael et al. (2020).65

The first formal instrumental variable approach for right-censored survival outcome was pro-
posed by Robins & Tsiatis (1991) who parameterized the treatment effect under a structural
accelerated failure time model. The approach, which applies to both point and time-varying
treatments, can be challenging to implement in practice due to the need for artificial censoring
in order to estimate the structural model parameters (Robins & Tsiatis, 1991; Joffe et al., 2012).70

More recently, Li et al. (2015); Tchetgen Tchetgen et al. (2015) considered estimating the con-
ditional hazard difference under an additive hazard model (Aalen, 1989). Tchetgen Tchetgen
et al. (2015) also considered instrumental variable estimation for a Cox structural model under
rare disease. MacKenzie et al. (2014) considered instrumental variable estimation of a marginal
structural Cox model for point exposure, while their estimator generally fails to be consistent75

as their proposed estimating equation fails to be unbiased. Martinussen et al. (2017b) developed
instrumental variable estimators under a semiparametric structural cumulative survival model,
which is closely related to the additive hazard model of Li et al. (2015); Tchetgen Tchetgen
et al. (2015). In contrast, Martinussen et al. (2017a); Sørensen et al. (2019) considered estimat-
ing the causal hazard ratio among the treated. The literature on instrumental variable methods80

for complier causal effect is also well developed for survival data, e.g., Loeys et al. (2005); Cuz-
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ick et al. (2007); Nie et al. (2011); Yu et al. (2015); Kianian et al. (2019). However, none of
these approaches has to date been extended to time-varying settings, although some progress
was made by Yende-Zuma et al. (2019) under somewhat restricted conditions including that the
unmeasured confounder cannot be an effect of prior treatment. 85

In fact many instrumental variables that have been used in point exposure studies are often
valid time-varying instrumental variables in settings where longitudinal data are available. For
instance, in many well-established longitudinal observational studies such as the Multicenter
AIDS Cohort Study and the Women’s Interagency HIV Study, both HIV treatment assignment
as well as treatment adherence information between follow-up visits are routinely collected and 90

therefore treatment assignment is a potential time-varying instrumental variable for the causal
effects of time-varying antiretroviral therapy actually taken on HIV related outcomes. Validity of
treatment assignment as a valid instrumental variable relies on an assumption that confounding
by indication can be fully accounted for, an assumption which is well justified in the literature
(Robins et al., 2000; Hernán et al., 2001). Nowadays, even if not measured directly, such adher- 95

ence information is routinely inferred from pharmacy data in large electronic medical records
when studying the causal effect of time-varying treatments on a variety of disease outcomes be-
yond HIV. Other examples of a common instrumental variable that is also inherently time-varying
include physician treatment preference as physician preferences evolve with clinical practice and
needs (Brookhart & Schneeweiss, 2007), distance from nearest college as individuals move over 100

time, distance for nearest needle exchange program (Frangakis et al., 2004), calendar period
(Cain et al., 2009), as well as differential distance between nearest low level neonatal intensive
care units and nearest high level neonatal intensive care units in analyses of causal effects of
delivery at a high level vs low level neonatal intensive care units on birth outcomes (Zubizarreta
et al., 2013; Yang et al., 2014). We acknowledge that sometimes instrumental variables may be 105

related to initiating a treatment but not adhering to it, so one should exercise caution in selecting
a valid time-varying instrumental variable.

In this paper, we consider an instrumental variable approach and establish sufficient condi-
tions for identification of marginal structural Cox model parameters encoding the joint effects of
binary time-varying treatments by leveraging a binary time-varying instrumental variable when 110

the sequential randomization assumption fails to hold. Our identifying conditions extend those of
Wang et al. (2018) to the longitudinal treatment setting, and require that in each risk set, no unob-
served confounder interacts with the instrumental variable in its additive effects on the treatment
process. Our proposed semiparametric estimators extend standard inverse probability of treat-
ment weighted estimation, which is the most popular approach for estimating marginal structural 115

Cox models under the sequential randomization assumption, by incorporating time-varying in-
strumental variables through a modified set of weights. We formally establish identification of
our modified weighted estimating equations, and we provide the asymptotic theory which al-
lows, in absence of model misspecification, for valid inference about the marginal structural Cox
model parameters. 120

2. MARGINAL STRUCTURAL COX MODELS

2·1. Notation
In this section, we first introduce some notation. Continuous time is denoted by t and is mea-

sured in weeks/months since the beginning of a subject’s follow-up. The index j is often used
when we indicate an integer of weeks/months, and J corresponds to the administrative end 125

of follow-up. Let A(j) and L(j) denote a binary treatment taken by a subject and a vector of
relevant prognostic factors for survival outcome in time interval (j, j + 1], respectively, where
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A(j)L(j) A(j + 1)L(j + 1) T

C

. . . . . .

Fig. 1. A causal graph of longitudinal confounding with
bi-directed arrows.

j = 0, . . . , J − 1. We assume that L(j) temporally precedes A(j). Though time t is consid-
ered to be continuous, we assume that recorded data on the treatment and prognostic factors
do not change except at integer times. For any time-dependent variable X , we use X(t) to130

denote the history of that variable up to time t. For example, the covariate process through t
is L(t) = (L(0), L(1), . . . , L(dte − 1)), where dte denotes the smallest integer greater than or
equal to t. Furthermore, let C̃ denote censoring time, observed time Y = min(T,C), and cen-
soring indicator δ = I(T ≤ C), where C = min(C̃, J). Throughout the paper, unless necessary,
we suppress the subscript denoting individual because we assume that the observed data of each135

subject is drawn independently from a distribution common to all subjects.
Figure 1 gives a causal graph representation of longitudinal confounding. The Markov prop-

erty encoded in this graph implies that a node is independent of non-descendants conditional on
its parents. Bi-directed edges into the covariate process L(j) and outcome T indicate the possi-
bility that there may be unmeasured common causes confounding their association. As pointed140

out by Robins (1997), a standard Cox model of the joint effects of treatment on time to event,
which would typically condition on L(j), is subject to collider bias and therefore is bound to
incorrectly report a causal effect linking treatment to the event time even under the sharp null
of no causal effect. This potential flaw of standard regression models motivated Robins (1998)
to develop marginal structural model as a principled approach to circumvent this difficulty. Im-145

portantly, there are no unmeasured common causes of the treatment process with the outcome
T , therefore encoding sequential randomization which we formally define in Section 2. Thus,
under a data generating mechanism consistent with Figure 1, the joint causal effect of treatment
on T would in fact be point identified under a nonparametric model for the observed data using
Robins’ g-formula (Robins, 1997).150

To conclude this section, we introduce counterfactuals which are key to defining marginal
structural models. Neyman (1923) proposed to use counterfactual outcomes to define the causal
effect of time-independent treatments in randomized experiments. Rubin (1974) further used po-
tential outcomes in the analysis of causal effects of time-independent treatments in observational
studies. Robins (1986, 1987) proposed a formal counterfactual theory of causal inference that155

extended Neyman’s time-independent treatment theory to longitudinal studies with both direct
and indirect effects and time-varying treatments and confounders. For a specific fixed treatment
history a ≡ a(J − 1), La(Ta) is defined to be the random vector representing a subject’s covari-
ate process had the subject been treated with the particular treatment regime a rather than his
or her observed treatment history; Ta is defined to be the subject’s time to death had the sub-160

ject been treated with the particular treatment regime a. Throughout the paper, we assume that
the future cannot cause the past, for example, λTa(t) = λTa(dte−1)

(t) and La(j) = La(j−1)(j),
j = 1, . . . , J − 1.
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2·2. Identification of marginal structural Cox models under the sequential randomization
assumption 165

Suppose that we are interested in estimating the parameter ψ0 indexing a marginal structural
Cox model, which encodes the causal effect of all potential treatment histories,

λTa(t|V ) = λ0 (t) exp {m (a (t) , t, ψ0, V )} , (1)

where m(·) is a known function which satisfies m
(
0(t), t, ψ0, 0

)
= 0, λ0(t) is an unspeci-

fied baseline hazard function, and V ∈ L(0) are baseline covariates. Suppose we observe data 170

O =
{
A (Y ) , L (Y ) , Y, δ

}
. We use A ≡ A (T ) , L ≡ L (T ) to denote the treatment history and

covariate history up to failure, respectively. In this section, we assume an independent censoring
mechanism, i.e., Ca ⊥ (La, Ta). Three important assumptions are sufficient to the identification
of ψ0 from the observed data in marginal structural Cox models.

We make the standard consistency assumption that T = TA almost surely, which states that 175

the observed failure time corresponds to the potential failure time under a potential intervention
that sets treatment process to the observed treatment history.

The next assumption is the well-known sequential randomization assumption proposed in
Robins (1998),

Ta ⊥ A(j) | A(j − 1) = a(j − 1), L(j), T ≥ j, j = 0, . . . , J − 1, (2) 180

where the term A(−1) is defined as an empty set throughout the paper. This assumption general-
izes the assumption of ignorable treatment assignment (Rosenbaum & Rubin, 1983) to longitudi-
nal studies with time-varying treatments and confounders. It states that, conditional on treatment
history up to time j − 1 and recorded covariates up to time j, treatment at time j is independent
of the counterfactual outcome Ta. The sequential randomization assumption holds if all com- 185

mon causes of T and A(j) are included in {L(j), A(j − 1)}, therefore ruling out unmeasured
confounding of the treatment process as encoded in graph of Figure 1.

Finally, we make the following treatment positivity assumption:

f(A(j) = a(j)|L(j), A(j − 1), T ≥ j) > 0, if f(L(j), A(j − 1), T ≥ j) > 0,

for a(j) ∈ {0, 1}, j = 0, . . . , J − 1. This assumption states that conditional on observed history,
there is a positive probability of receiving either treatment value at any given time. This assump-
tion makes it possible to draw inferences about longitudinal treatment comparisons encoded in 190

the marginal structural models.
Define time-varying weights as

W (t) =

dte−1∏
j=0

Wj =

dte−1∏
j=0

f
(
A(j)|L(j), A(j − 1), Y ≥ j

)
f∗
(
A(j)|V,A(j − 1), Y ≥ j

) , (3)

where f∗ is a user-specified function of the treatment process A(·), Robins (1998) showed that
ψ0 in Equation (1) is the solution to the following weighted estimating equation: 195

E
∫
dN(t){W (t)}−1

{
h
(
A, t, V

)
−

E
[
h
(
A, t, V

)
exp

{
m
(
A (t) , t, ψ, V

)}
{W (t)}−1I(Y ≥ t)

]
E
[
exp

{
m
(
A (t) , t, ψ, V

)}
{W (t)}−1I(Y ≥ t)

] }
= 0,

where N(t) = I(Y ≤ t, δ = 1) is the counting process for the outcome variable, and h is a
vector-valued function which has the same dimension as the causal parameter of interest ψ0. In
particular, given the following marginal structural Cox model,

λTā(t) = λ0(t) exp{ψ0a(t)}, (4)
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A(j)L(j) A(j + 1)L(j + 1) T

U(j) U(j + 1) C

. . . . . .

Fig. 2. A causal graph of longitudinal confounding with
unobserved confounders.

and taking h
(
t, A, V

)
= A(t), ψ0 is the solution to the following weighted estimating equation:

E
∫
dN(t){W (t)}−1

{
A(t)− E[A(t) exp{ψA(t)}{W (t)}−1I(Y ≥ t)]

E[exp{ψA(t)}{W (t)}−1I(Y ≥ t)]

}
= 0.

The weights W (t) are generally unknown and need to be estimated from the observed data.200

Hernán et al. (2001) proposed using pooled logistic regression to estimate a model for the treat-
ment process in both numerator and denominator of W (t). The estimator obtained by substitut-

ing Ŵ (t) for W (t) and evaluating expectations under empirical distribution, is n1/2-consistent
and asymptotically linear under standard regularity conditions including n1/2-consistency of an
estimator for the treatment process f(A(j)|L(j), A(j − 1), T ≥ j).205

3. INSTRUMENTAL VARIABLE IDENTIFICATION AND INFERENCE OF MARGINAL
STRUCTURAL COX MODEL

3·1. Identification
It is not always possible to ensure that a sufficiently rich set of variables L was collected

for sequential randomization to hold. In this vein, suppose that U(j) denotes an unobserved210

common cause of A(j), A(j + 1), . . . , A(dT e − 1) and T , such that Equation (2) fails. There-
fore the treatment process is endogenous, i.e., subject to unmeasured confounding. On the other
hand, suppose that one has observed a time-varying instrumental variable Z(j) which satisfies
instrumental variable conditions described below. Next, we develop an approach for leveraging
such an instrumental variable process to identify and estimate the marginal structural Cox model215

parameter ψ0.
A variety of instrumental variable models have been considered in existing literature in point

treatment case; see Swanson et al. (2018) for a comprehensive review. In the following, we will
adopt the latent counterfactual instrumental variable model described in Swanson et al. (2018)
for the proposed method. Specifically, we consider a setting such as the one depicted in Fig-220

ure 2, where the sequential randomization assumption fails to hold as we allow for unmeasured
time-varying covariates which confound the treatment process. Suppose that U(j) is a common
cause of A (j) and T , where A (j) = (A (j) , . . . , A (dT e − 1)). Thus, we make the following
assumption of latent sequential randomization:
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Assumption 1. (Latent Sequential Randomization) 225

Ta ⊥ A(j) | A(j − 1) = a(j − 1), L(j), U(j), Z(j), T ≥ j, j = 0, . . . , J − 1.

Denote the observed data as O =
{
A (Y ) , L (Y ) , Z (Y ) , Y, δ

}
. A binary time-varying instru-

mental variable Z(j) is observed just prior to A(j) but after L(j) for j = 0, . . . , J − 1, and
satisfies the following time-varying instrumental variable conditions for j = 0, . . . , J − 1:

Assumption 2. (Instrumental Variable Relevance) Z(j) 6⊥ A(j) | H(j), T ≥ j, with history 230

process defined as H(j) ≡ {A(j − 1), L(j), Z (j − 1)}.

Assumption 3. (Exclusion Restriction)(
Laz, Uaz, Taz

)
=
(
La, Ua, Ta

)
.

Assumption 4. (Instrumental Variable Independence)(
Ta, La, Ua

)
⊥ Z(j)|A(j − 1) = a(j − 1), L(j), Z(j − 1), T ≥ j.

Assumption 5. (Instrumental Variable Positivity)

0 < Pr(Z(j) = 1|H(j), T ≥ j) < 1.

Assumptions 2-4 are core instrumental variable conditions, while Assumption 5 is needed for 235

nonparametric identification (Greenland, 2000; Hernán & Robins, 2006). Assumption 2 requires
that the instrumental variable is associated with the treatment conditional on history process.
Note that Assumption 2 does not rule out confounding of the Z(j)-A(j) association by an un-
measured factor, however, if present, such factor must be independent of U(j). We will refer to Z
as causal instrumental variables in case no such confounding is present. Assumption 3 states that 240

there can be no direct causal effect of Z(j) on L(j + 1), U(j + 1) and T not mediated by A(j).
Assumption 4 essentially states that the null direct causal effect of Z(j) on L(j + 1), U(j + 1),
and T would be identified conditional on history process if one could intervene and set A = a.

Finally, we also require the following condition, which states that there is no additive interac-
tion between U(j) and Z(j) in a model for A(j) given U(j), H(j), and T ≥ j. 245

Assumption 6. (Independent Compliance Type)

E
[
A(j)|U(j), H(j), T ≥ j, Z(j) = 1

]
− E

[
A(j)|U(j), H(j), T ≥ j, Z(j) = 0

]
= ∆j (H(j)) .

(5)

This assumption is a longitudinal generalization of the assumption made by Wang & Tchet-
gen Tchetgen (2018); Wang et al. (2018) in the case of point exposure. 250

To interpret Assumption 6, suppose that the causal effect of Z(j) on A(j) is unconfounded
given U(j), H(j) and T ≥ j, i.e.,

Z(j) ⊥ Az(j) (j) |U(j), H(j), T ≥ j,

for j = 0, . . . , J − 1, then

E
[
Az(j)=1(j)−Az(j)=0(j)|U(j), H(j), T ≥ j

]
= ∆j (H(j)) .

The causal interpretation is that while the unmeasured confounders U(j) may confound the
causal effects of A(j), U(j) does not predict compliance type expressed in terms of an
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A(j)

U(j)

L(j)

Z(j) A(j + 1)

U(j + 1)

L(j + 1)

Z(j + 1). . . . . .

Fig. 3. A causal graph of longitudinal confounding with
unobserved confounders and instrumental variables.

individual’s potential treatment status under hypothetical instrumental variable interventions255 {
Az(j)=1(j), Az(j)=0(j)

}
at any j. Figure 3 gives a causal graph representation of longitudi-

nal confounding with unobserved confounders U ≡ U (T ) and causal instrumental variables
Z ≡ Z (T ). Note that in principle we only require Equation (5) so that Z(j) may not be a causal
instrumental variable, i.e., the association between Z(j) andA(j) may be subject to uncontrolled
confounding, provided the confounder is independent of U .260

Finally, we make a positivity assumption regarding censoring, i.e., SC(J) > 0, and the fol-
lowing standard independent censoring assumption.

Assumption 7. C ⊥ (T,A,Z, U, L).

It might not always be reasonable to make such independence assumption about loss-to-
follow-up censoring; in fact in Section 5 we implement inverse probability of censoring weights265

which appropriately account for dependent censoring by time-varying covariates under the
weaker condition C ⊥ (U, T )|(L(j), A(j), Z(j), T ≥ j).

3·2. Identification of marginal structural Cox model parameter
Before presenting the main identification result, the following lemma states that under As-

sumptions 4 and 6, ∆j (h(j)) is empirically identified from the observed data.270

LEMMA 1. Under Assumptions 4 and 6, we have that for j = 0, . . . , J − 1,

∆j (h(j)) =E [A(j)|H(j) = h(j), Y ≥ j, Z(j) = 1]− E [A(j)|H(j) = h(j), Y ≥ j, Z(j) = 0] .

Next, we define the following novel time-varying weights:

W
?
(t) ≡

dte−1∏
j=0

W ?
j =

dte−1∏
j=0

W ?
j,1W

?
j,2, (6)275

where

W ?
j,1 =

f (Z(j)|H(j), Y ≥ j) ∆j (H(j))

(−1)1−Z(j)
,
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W ?
j,2 =

1

(−1)1−A(j) f∗
(
A(j)|V,A(j − 1), Y ≥ j

) ,
and f∗ is user-specified, possibly empirically determined. Given that these weights can be iden-
tified from the observed data, we have the following theorem establishing that ψ0 in marginal 280

structural Cox model (1) is identified.

THEOREM 1. Suppose that consistency, positivity, and Assumptions 1–7 hold. Then ψ0 solves
the population moment equation E{Uh(ψ)} = 0, where

Uh(ψ) ≡
∫

dN(t)

W
?
(t)

h (A, t, V )− E
[
h
(
A, t, V

)
exp

{
m
(
A (t) , t, ψ, V

)}
I(Y ≥ t)/W ?

(t)
]

E
[
exp

{
m
(
A (t) , t, ψ, V

)}
I(Y ≥ t)/W ?

(t)
]

 ,

(7)

N(t) = I(Y ≤ t, δ = 1), and h(A, t, V ) is a dim(ψ)-dimensional vector-valued function such 285

that ∂E[Uh(ψ)]/∂ψ|ψ=ψ0 is invertible.

3·3. Instrumental variable based weighted estimator and large sample properties
Theorem 1 motivates a weighted estimating equation of the parameter ψ0 for the marginal

structural Cox model defined in Equation (1) in the presence of unmeasured confounding, i.e.,
ψ0 is the solution of the following population estimating equation 290

E
∫

dN(t)

W
?
(t)

h (A, t, V )− E
[
h
(
A, t, V

)
exp

{
m
(
A (t) , t, ψ0, V

)}
{W ?

(t)}−1I(Y ≥ t)
]

E
[
exp

{
m
(
A (t) , t, ψ0, V

)}
{W ?

(t)}−1I(Y ≥ t)
]

 = 0.

(8)
However, the weights W

?
(t) are unknown and need to be estimated from the observed

data. We propose to use various parametric models to estimate these densities. For example,
one may estimate densities f (A(j)|H(j), Z(j), Y ≥ j), f∗(A(j)| V,A(j − 1), Y ≥ j), and
f (Z(j)|H(j), Y ≥ j) with the following logistic regressions,

logit {Pr (A(j) = 1|H(j), Z(j), Y ≥ j)} = α̂Tj (1, H(j), Z(j)), 295

logit
{

Pr∗
(
A(j) = 1|V,A(j − 1), Y ≥ j

)}
= β̂Tj (1, V, A(j − 1)),

logit {Pr (Z(j) = 1|H(j), Y ≥ j)} = γ̂Tj (1, H(j)),

estimated by standard maximum likelihood. Let P̂r(A(j) = 1|H(j), Y ≥ j, Z(j) = 1) and
P̂r(A(j) = 1|H(j), Y ≥ j, Z(j) = 0) denote the maximum likelihood estimation of Pr(A(j) =
1|H(j), Z(j) = 1, Y ≥ j; α̂j) and Pr(A(j) = 1|H(j), Z(j) = 0, Y ≥ j; α̂j), respectively, and 300

let f̂ (Z(j)|H(j), Y ≥ j) ≡ f (Z(j)|H(j), Y ≥ j; γ̂j). The compliance type ∆j (H(j)) can
then be estimated by

∆̂j(H(j)) =P̂r
(
A(j) = 1|H(j), Y ≥ j, Z(j) = 1

)
−P̂r

(
A(j) = 1|H(j), Y ≥ j, Z(j) = 0

)
, j = 0, . . . , J − 1.
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We denote the estimated weights as305

Ŵ
?

(t) =

dte−1∏
j=0

f̂ (Z(j)|H(j), Y ≥ j) ∆̂j (H(j))

(−1)2−A(j)−Z(j) f̂∗
(
A(j)|V,A(j − 1), Y ≥ j

) .
Our final estimator ψ̂ solves an empirical version of Equation (8), i.e., in which E is replaced

by Pn. By standard M-estimation theory, ψ̂ is asymptotically linear with first order expansion
given by

n1/2(ψ̂ − ψ0)310

=− E
{
∂Uh(ψ, η0)

∂ψ

∣∣
ψ=ψ0

}−1 [
U ch(ψ0, η0) + E

(
∂Uh(ψ0, η)

∂η

∣∣
η=η0

)
IFη̂

]
+ op(1),

where

Uh(ψ, η) ≡
∫

dN(t)

W
?
(t; η)

h (A, t, V )− E
[
h
(
A, t, V

)
exp

{
m
(
A (t) , t, ψ, V

)}
I(Y ≥ t)/W ?

(t; η)
]

E
[
exp

{
m
(
A (t) , t, ψ, V

)}
I(Y ≥ t)/W ?

(t; η)
]

 ,

U ch(ψ, η) ≡
∫
dN(t)− I(Y ≥ t)dΛ0(t)

W
?
(t; η)

h (A, t, V )− E
[
h
(
A, t, V

)
exp

{
m
(
A (t) , t, ψ, V

)}
I(Y ≥ t)/W ?

(t; η)
]

E
[
exp

{
m
(
A (t) , t, ψ, V

)}
I(Y ≥ t)/W ?

(t; η)
]

 ,

η = {(αj , γj), j = 0, . . . , J − 1}, IFη̂ is the influence function of η̂, and Λ0 is the baseline cu-
mulative hazard function. Confidence intervals can then be constructed either using an estimate315

of asymptotic variance of ψ̂ based on the influence function representation given above or via
the nonparametric bootstrap.

4. SIMULATION STUDIES

In this section, we report simulation studies in a two occasion setting J = 2 to compare
the proposed estimator with existing estimators. As a benchmark, we considered an oracle320

weighted estimator of marginal structural Cox models which used correctly specified weight
f
(
A(j)|L(j), U(j), A(j − 1), Y ≥ j

)
rather than f

(
A(j)|L(j), A(j − 1), Y ≥ j

)
in Equa-

tion (3). This oracle estimator is clearly not feasible in practice because U would not be ob-
served. In addition, we implemented both a marginal structural Cox model estimated via inverse
probability of treatment weighting incorrectly assuming the sequential randomization assump-325

tion given L process, and a time-varying Cox model which directly adjusted for L(Y ) in the
regression model.

Generating failure time outcomes under a specific marginal structural Cox model is not
straightforward. We adopted the approach of Tchetgen Tchetgen (2006) which we outline in
the next section.330

4·1. Generating potential outcomes under a marginal structural Cox model
Let TA = {T a : a ∈ A}, A = {(0, 0), (0, 1), (1, 0), (1, 1)}, denote a person’s set of potential

outcomes. Under our identifying assumptions and further imposing

f(L(j), U(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA)

=f(L(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA)f(U(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA),335
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the full data {TA, A, L, U, Z} have a joint likelihood that factorizes as:

fTA(TA)
J−1∏
j=0

f(L(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA)

J−1∏
j=0

f(U(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA)

J−1∏
j=0

f(Z(j)|A(j − 1), L(j), Z(j − 1))
J−1∏
j=0

f(A(j)|A(j − 1), L(j), U(j), Z(j)).

Suppose we wish to generate TA under the following marginal structural Cox model, 340

λTa0,a1
(t) = λ exp{ψ0a(t)}, (9)

where a(t) = a0 if t ≤ 1 and a(t) = a1 if t > 1. Lemma S1 presented in the Supplementary
Material shows that by generating T0,0 from an exponential density function with constant hazard
λ, then defining TA under the following accelerated failure time model,

T0,0 =

∫ Ta0,a1

0
exp{ψ0a(t)}dt,

implies the marginal structural Cox model in Equation (9). We further specified

f(L(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA) = f(L(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), T0,0),

f(U(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), TA) = f(U(j)|A(j − 1), L(j − 1), U(j − 1), Z(j − 1), T0,0),

where j = 0, 1. Upon generating TA, we simulated the processes L,U,Z,A, respectively. Cen-
soring time was generated independently, and the observed time and censoring indicator were
defined as Y = min(T,C), and δ = I(T ≤ C), respectively.

4·2. Simulation settings 345

We considered two settings, with ψ0 = −1 for the first scenario and ψ0 = 0 for the second
scenario. For both scenarios, the random errors ε’s were generated fromN(0, 0.52). The baseline
hazard λ0(t) = 1. For convenience, in a slight abuse of notation, we omit the input argument of
∆j(H(j)) and write ∆j hereinafter. The data generating mechanism for treatment and survival
time is described as follows: 350

L(0) = µL(0) + ε1, where µL(0) = 1.5T0,0.
U(0) = µU(0) + ε2, where µU(0) = 1.5T0,0.
Z(0)|L(0) ∼ Bernoulli(Φ{−0.5 + 0.4L(0)}), where Φ is cumulative distribution function of

standard normal distribution.
A(0)|L(0), U(0), Z(0) ∼ Bernoulli(Φ{0.2L(0)− 0.8U(0)}(1−∆0) + Z(0)∆0), where 355

∆0 = Φ{0.2L(0)}.
L(1) = µL(1) + ε3, where µL(1) = L(0)− U(0) + 1.5A(0) + T0,0.
U(1) = µU(1) + ε4, where µU(1) = 0.5L(0)− U(0) +A(0) + T0,0.
Z(1)|L(1), A(0), Z(0) ∼ Bernoulli(Φ{−1 + 0.2L(1) + 0.2A(0) + 0.2Z(0)}).
A(1)|L(1), U(1), Z(1) ∼ Bernoulli(Φ{0.2L(1)− 0.8U(1)}(1−∆1) + Z(1)∆1), where 360

∆1 = Φ{0.2L(1)}.
Censoring time was generated by C = min(C̃, 2), where C̃ followed U(0, 4) yielding cen-

soring rate approximately equal to 40% for the first scenario, and 30% for the second scenario.
We also performed a sensitivity analysis for different censoring rates for each scenario. These
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additional results are presented in the Supplementary Material. We considered different sample365

sizes n = 2000, 4000, 8000. Each simulation was repeated 500 times. We performed a sensitiv-
ity analysis for violation of various instrumental variable assumptions for each scenario. These
additional results are presented in the Supplementary Material. In addition, we examined the em-
pirical coverage of 95% confidence intervals of ψ0 for both scenarios at sample size n = 1000.
Confidence intervals were obtained by nonparametric bootstrap with 200 replications.370

Both standard inverse probability of treatment weighted estimator and our proposed weighted
estimator of marginal structural Cox model (4) require estimation of weights. The density func-
tions f

(
A(j)|L(j), A(j − 1), Y ≥ j

)
and f∗

(
A(j)|V,A(j − 1), Y ≥ j

)
in Equations (3) and

(6) were estimated via maximum likelihood of time-specific logistic regression models,

logit
{

Pr
(
A(j) = 1|L(j), A(j − 1), Y ≥ j

)}
= ξ̂Tj (1, L(j), A(j − 1)),375

logit
{

Pr∗
(
A(j) = 1|V,A(j − 1), Y ≥ j

)}
= β̂Tj (1, A(j − 1)),

where j = 0, 1. The conditional density of Z was estimated via maximum likelihood estimation
using the probit model,

probit {Pr (Z(j) = 1|H(j), Y ≥ j)} = γ̂Tj (1, L(j), A(j − 1), Z(j − 1)),

where probit link function is the inverse standard normal cumulative distribution function. The380

data generating mechanism specified a model Pr(A(j) = 1|L(j), Z(j)) = Φ(L(j))(1−∆j) +
Z(j)∆j . The estimation of compliance type was therefore performed by maximum likelihood of
Bernoulli condition on observations still at risk at time j,

l(θj , αj |Y ≥ j) = log
[
Φ
{
θTj (1, L(j))

} [
1− Φ

{
αTj (1, L(j))

}]
+ Z(j)Φ

{
αTj (1, L(j))

} ]
A(j)

+ log
(

1−
[
Φ
{
θTj (1, L(j))

} [
1− Φ

{
αTj (1, L(j))

}]
+ Z(j)Φ

{
αTj (1, L(j))

} ])[
1−A(j)

]
,385

where j = 0, 1. Thus, the estimated compliance type ∆̂j = Φ{α̂Tj (1, L(j))}, where (θ̂j , α̂j) is
the maximizer of l(θj , αj).

4·3. Simulation results
We report both squared bias and mean squared error of the estimated causal parameter in Fig-

ure 4 for scenario 1, Figure 5 for scenario 2, respectively. In both figures, “cox” denotes a stan-390

dard time-varying Cox model which adjusted for L(Y ) directly in the regression; “sra” denotes
standard inverse probability of treatment weighted estimation of marginal structural Cox model
which assumes the sequential randomization assumption; “iv” denotes the proposed instrumental
variable estimator; “sra.o” denotes the oracle inverse probability of treatment weighted estima-
tion of marginal structural Cox model which includes U0 and U1 in the treatment model.395

From the left panels of Figures 4 and 5, we see that Cox propositional hazard model and
standard weighted estimation of marginal structural Cox model have severe bias. The former
because there exist time-dependent confounders that are affected by previous treatments and un-
measured confounding; the latter because of unmeasured confounding. Our proposed estimator
outperforms both Cox propositional hazard model and standard weighted estimation of marginal400

structural Cox model in terms of bias and mean squared error. The oracle weighted estimator
of marginal structural Cox model performs as well as the proposed method, and both bias and
mean squared error converge to zero as sample size increases. This confirms that our proposed
instrumental variable approach performs nearly as well as the infeasible inverse probability of
treatment weighted estimator had U been observed both in terms of bias and can outperform the405

latter in terms of efficiency.
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Fig. 4. Scenario 1: Monte Carlo squared bias and mean
squared error of ψ̂, respectively
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Fig. 5. Scenario 2: Monte Carlo squared bias and mean
squared error of ψ̂, respectively

Table 1 presents empirical coverage of 95% nonparametric bootstrap confidence intervals.
The proposed instrumental variable method and oracle inverse probability of treatment esti-
mator achieved the nominal coverage. However, the confidence intervals of standard weighted
estimation of marginal structural Cox model and standard time-varying Cox proportional hazard 410

model both failed to attain nominal coverage.

Table 1. Coverage of 95% confidence intervals (%)
iv sra sra.o cox

Scenario 1 (ψ0 = −1) 96.4 87.4 93.6 67.2
Scenario 2 (ψ0 = 0) 97.2 87.2 94.2 66.4
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5. DATA APPLICATION ESTIMATING THE EFFECT OF COMMUNITY ANTIRETROVIRAL
THERAPY COVERAGE ON HIV ACQUISITION415

We applied the proposed method to an HIV study analyzed in Tanser et al. (2013), which found
evidence that significant reduction of HIV incidence can be achieved by nurse-led, devolved,
public-sector antiretroviral therapy (ART) programs in rural sub-Saharan African settings where
complete coverage of therapy under existing treatment guidelines has not yet been attained. Their
analysis was based on a standard time-varying Cox proportional model. Our goal was to examine420

whether unmeasured confounding biased the reported association between high coverage of ART
and the decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa.

We reanalyzed the dataset considered in Tanser et al. (2013), one of Africa’s largest
population-based prospective cohort studies to follow up individuals who were HIV-uninfected
at baseline. Our analysis was restricted to 6093 individuals who were enrolled in the study and425

were known to be HIV negative on 2008/06/05 with complete covariate and instrumental vari-
able data. The objective of our analysis was to determine the joint effects of living in a high
coverage community at two time occasions, t0 = 2008/06/05 and t1 = 2011/01/01 on HIV in-
cidence. The overall cumulative proportion of events for the outcome was 6.3%. We considered
the following six time-varying covariates: Number of partners in the past 12 months; Current430

marital status; Wealth index in quintiles; Age and gender; Location of residence; Community
HIV prevalence. ART coverage was defined as the proportion of all HIV-infected individuals
receiving ART at every location (Tanser et al., 2013). HIV prevalence and ART coverage of
an individual’s surrounding community were determined for every year of observation. ART
coverage and HIV prevalence around each individual were measured by means of a moving435

two-dimensional Gaussian kernel of three kilometers search radius for each year of observation
(Tanser et al., 2013). Here ART coverage was dichotomized at 30%, A = 1 if ART coverage
≥ 30%, and 0 otherwise, such that 40% of A equal to 1 over person-time.

Travel distance to the nearest ART facility defined our instrumental variable, Z = 1 if travel
distance to nearest ART facility was less than 3.8 km and Z = 0 otherwise, such that 65% of440

Z = 1 over person-time. Travel distance to the closest ART facility was found to be strongly
associated with ART coverage. Adjusted log odds ratios (95% confidence intervals) for the asso-
ciation between travel distance to the closest ART facility and community ART coverage were
1.22 (1.02, 1.42) and 0.79 (0.52, 1.05) at t0 and t1, respectively, which justify instrumental vari-
able relevance Assumption 2. Furthermore, it was reasonable to assume that the mechanism by445

which local density of ART clinic, and therefore travel distance to nearest ART clinic might
impact HIV incidence, was primarily through ART coverage, thus the exclusion restriction As-
sumption 3 holds.

We specified the marginal structural model given by (4), and estimated the various models
needed to construct standard inverse probability of treatment weighted weights as well as our450

proposed instrumental variable weights under the following model specification:

logit
{

Pr
(
A(j) = 1|L(j), A(j − 1), Y ≥ j

)}
= ξ̂Tj (1, L(j), A(j − 1)),

logit {Pr (A(j) = 1|H(j), Z(j), Y ≥ j)} = α̂Tj (1, L(j), A(j − 1), Z(j)),

logit
{

Pr∗
(
A(j) = 1|V,A(j − 1), Y ≥ j

)}
= β̂Tj (1, V, A(j − 1)),

logit {Pr (Z(j) = 1|H(j), Y ≥ j)} = γ̂Tj (1, L(j), A(j − 1), Z(j − 1)).455

We also considered incorporating weights which account for dependent censoring in the Sup-
plementary Material, by adopting the approach of Robins & Rotnitzky (1992) to our approach

under assumption C ⊥ (U, T )|(L(j), A(j), Z(j), T ≥ j). This entails multiplying Ŵ
?

(t) by an
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estimate of

WC(t) =

dte−1∏
j=0

Pr(C > j|A(j − 1), L(j − 1), Z(j − 1), C > j − 1)

Pr∗(C > j|V,A(j − 1), C > j − 1)
.

Results with or without censoring weights were similar indicating no evidence of dependent 460

censoring. We obtained point estimates and 95% confidence intervals of hazard ratio with the
nonparametric bootstrap with 1000 replications for standard weighted estimation and instrumen-
tal variable estimation of marginal structural Cox model, respectively. To alleviate the impact
of extreme values of weights, we truncated 2.5th and 97.5th percentiles of the weights for the
proposed estimator (Cole & Hernán, 2008). The histogram of weights and results of untruncated 465

weights are reported in Section S10 of the Supplementary Material. Untruncated instrumental
variable weighted estimator has a similar point estimate as the truncated instrumental variable
weighted estimator but wider confidence intervals due to outliers in distribution of estimated
weights. As can be seen from Table 2, the instrumental variable point estimate is much smaller,
which we interpret, under our instrumental variable assumptions, as appropriately accounting 470

for unmeasured confounding, suggesting that Tanser et al. (2013) might have underestimated the
true effect of HIV coverage.

Table 2. The effect of community ART coverage on HIV acquisition
sra iv∗

Hazard ratio 0.45 0.19
95% confidence intervals (0.20,0.92) (0.06,0.83)

∗ Truncation at 2.5th and 97.5th percentiles 475

6. DISCUSSION

The proposed method may be improved or extended in multiple ways. It might be of interest
to look at truncation of the weights in simulations. Formal justification for truncating weights
as a means for stabilization of inverse probability weighting analyses is currently lacking and
represents a fruitful avenue of future research. Another potential extension is in the direction of 480

semiparametric efficiency and enhanced robustness to partial model misspecification of nuisance
parameters. The efficient influence function for the proposed marginal structural model is signif-
icantly more complicated than that in the marginal structural mean model (Tchetgen Tchetgen
et al., 2018) and beyond the scope of this paper.

485
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