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Abstract: The difference of AUCs is a widely used measure of the improvement in class
discrimination when comparing predictors. The predictors often take the form of indexes,
the linear fitted values β̂Tw from some estimation procedure. Since the estimation procedure
is often carried out using the same data as used to estimate the difference of AUCs, standard
results on the distribution of the difference of AUCs, assuming independent observations,
generally do not apply. Recent work has developed non-parametric inference procedures
under the assumption that the true difference is nonzero, which is useful, e.g., for form-
ing confidence intervals. The distribution under the assumption that the true difference is
zero is of central importance for testing. However, the analysis is more complicated as the
asymptotic distribution of the test statistic is generally non-normal, and only special cases
have appeared in the literature. The asymptotic distribution is presented here under general
conditions and parametric and non-parametric estimation are described. The previously
published special cases are re-derived. In so doing we resolve a long-standing problem in the
biomedical literature that has as recently as 2021 been described as “intractable.”

1 Introduction

The AUC is a measure of how effectively a marker discriminates between two classes, and the
difference in AUCs compares the discrimination of two markers. In the medical sciences, the
marker is often a linear combination β of a set of subject characteristics x, and comparison
of markers often takes the form of comparing the AUCs of two sets of patient characteristics
x and y. The characteristics are often nested, x ⊂ y, as when investigating the impact
on discrimination of additional factors y\x. The difference in AUCs has been described by
experts as one of the most widely used measures of the difference in discrimination (Demler
et al., 2017).

Despite its widespread adoption, inferences on the difference in AUCs have been observed
to be faulty (Tzoulaki et al., 2009; Seshan et al., 2013; Demler et al., 2012, 2017; Heller et al.,
2017; Lee, 2021). The reason lies in the typical way in which the difference is estimated,
where the same data is used both to obtain the coefficient vectors β̂ as to estimate the
difference of the AUCs of the fitted values β̂Tx. The asymptotic null distribution of the test
statistic formed in this way is in general non-normal. In certain special cases few solutions
have appeared, but these do not cover important cases such as when β̂ is estimated by
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logistic regression. We describe the asymptotic null distribution under general conditions
and propose procedures for inference.

The remainder of the paper is organized as follows. Next we give more background
on the problem of inference on the difference of index AUCs and summarize approaches
available in the literature. In Section 3 we derive the asymptotic null distribution of the
difference of AUCs based on fitted values. In Section 4 we describe parametric and non-
parametric estimation of this distribution. Along the way we re-derive the special case of
Heller et al. (2017). In Section 5 we examine the finite-sample performance of the proposed
estimation procedures. Here we also re-analyze the special case given in Demler et al. (2011).
We conclude and suggest extensions and directions for future work in Section 6. Software
implementing the proposed inference procedure and the routines used in the simulation
section are publicly available at the corresponding author’s website.

2 Background

An observation is modeled as a pair consisting of covariates W and a binary status indicator
D,

(W,D),W ∈ Rp, P (D = 0) = 1− P (D = 1) ∈ (0, 1). (1)

Denote by X ∈ X , X ∼ F, Y ∈ Y , Y ∼ G the RVs, state spaces, and distributions obtained
by conditioning W on D = 0 and D = 1. We use “control” and “case” generically to refer
to these conditional RVs and distributions. Let (W1, D1), . . . , (WM+N , DM+N), be an IID
sample under (1), with the control and case variables

X1, . . . , XM
IID∼ F, Y1, . . . , YN

IID∼ G,M =
∑
{D = 0}, N =

∑
{D = 1}. (2)

Vectors β̂ ∈ Rp and γ̂ ∈ Rp are obtained based on the sample by some procedure such as
logistic regression. They are assumed to have fixed

√
M +N -rate probability limits β∗ and

γ∗ as M,N →∞ under this procedure.
The AUC, measuring how effectively a scalar marker discriminates between two classes,

is the probability a control marker is less than a stochastically independent case marker,
with ties weighted by half. A nonparametric estimator of the AUC is the sample proportion
of control markers less than case markers, with ties weighted by half. In the case that the
markers are indexes with estimated coefficient β̂, the estimator takes the form

θ̂ =
1

MN

∑
i,j

ψ(β̂TXi, β̂
TYj),

where ψ : (u, v) 7→ {u < v}+ 1
2
{u = v}. The difference of index AUCs

∆ = Eψ(β∗TX, β∗TY)− Eψ(γ∗TX, γ∗TY)

is estimated nonparametrically by

∆̂ =
1

MN

∑
i,j

ψ(β̂TXi, β̂
TYj)−

1

MN

∑
i,j

ψ(γ̂TXi, γ̂
TYj).
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The asymptotic distribution of ∆̂ is sought for inference. The proper normalization of
∆̂ depends on the probability limits β∗ and γ∗. When β∗ 6= γ∗ a

√
M +N normalization is

commonly appropriate, leading to an asymptotically normal distribution. This situation is
discussed in Doyle-Connolly and Michael (2023). The distribution when β = γ is considered
in this paper. In this situation ∆̂ must often be normalized by M + N to obtain a proper
asymptotic distribution, which is then a combination of products of normals. Whereas the
distribution of ∆̂ when β 6= γ is useful for forming confidence intervals for ∆, the distribution
under β = γ is useful for testing the null hypothesis of no difference between the AUCs of
the two markers,

H0 : ∆ = 0. (3)

A number of early papers (Demler et al., 2011, 2012; Seshan et al., 2013) observed that
the standard test (DeLong et al., 1988) for the difference of index AUCs did not return
anticipated results, e.g., a non-significant p-value when one marker was otherwise known
to be significantly more informative than the other. Researchers soon identified the use of
estimated coefficients as the culprit and, using synthetic data, observed that the limiting
distribution appeared non-normal. Several parametric results followed, making assumptions
about the distribution of the covariates or the coefficient estimation procedure, or both.
Demler et al. (2011) observed that when the covariates are normal and the coefficients are
estimated by linear discriminant analysis (see Section 4.1.1), the null ∆ = 0 may be tested
with an F-test. Pepe et al. (2013) gave the far-reaching result that testing for a difference
of AUCs of risk functions is the same as testing for a difference in the risk functions. Heller
et al. (2017) derive the asymptotic distribution of ∆̂ when the coefficients are estimated
by the maximum rank correlation (see Section 4.1.2). Remarking that the asymptotic null
distribution is intractable in common cases, Lee (2021) proposes a resampling approach when
the data satisfy a change-point assumption.

Finally, Sherman (1993) considers the generalized regression model proposed by Han
(1987), with the object of obtaining asymptotic normality of an estimator for the model
parameters. This estimator is the maximum rank correlation, which is based on an index
AUC. Although the paper does not seem to be a part of the more recent literature on the
difference in AUCs, many of the methods are similar to those used here.

3 Theory

Given β, γ ∈ Rp and distributions F and G on Rp, let

θ(β, F,G) =

∫
ψ(βTx, βTy)dF (x)dG(y)

and

∆(β, γ, F,G) =

∫
ψ(βTx, βTy)dF (x)dG(y)−

∫
ψ(γTx, γTy)dF (x)dG(y)

denote respectively the index AUC and the difference of index AUCs written as statistical
functionals. Let F̂ , Ĝ denote the empirical CDFs of the control and case observations. With
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this notation ∆̂ = ∆(β̂, γ̂, F̂ , Ĝ) and the null hypothesis (3) may be written ∆(β∗, γ∗, F,G) =
0. To determine the asymptotic distribution of ∆̂ under the null decompose it as

∆(β̂, γ̂, F̂ , Ĝ) = ∆(β̂, γ̂, F̂ , Ĝ)−∆(β∗, γ∗, F,G)

= ∆(β̂, γ̂, F̂ , Ĝ)−∆(β̂, γ̂, F,G) (4)

+∆(β̂, γ̂, F,G)−∆(β∗, γ∗, F,G) (5)

We refer to (4) and (5) as the Hoeffding term and the Taylor term, for reasons that will
become apparent. The Hoeffding term reflects the estimation error due to the use of the
estimated rather than true AUC whereas the Taylor reflects the error due to the use of
estimated coefficients β̂, γ̂ rather than their probability limits β∗, γ∗. Several possibilities
affecting the convergence rate arise as first-order components of the Hoeffding and Taylor
terms may or may not vanish. We consider them in turn.

The Taylor term (5). Assuming θ(·, F,G) is smooth enough, expand (5) in a Taylor
series:

∆(β̂, γ̂, F,G) = θ(β̂, F,G)− θ(γ̂, F,G)

= (β̂ − β∗)T θ′(β∗, F,G) + (β̂ − β∗)T θ′′(β∗, F,G)(β̂ − β∗)/2 + oP (|β̂ − β∗|2)

+(γ̂ − γ∗)T θ′(γ∗, F,G) + (γ̂ − γ∗)T θ′′(γ∗, F,G)(γ̂ − γ∗)/2 + oP (|γ̂ − γ∗|2)

The primes indicate differentiation with respect to the first argument. Under the alterna-
tive β 6= γ, considered in Doyle-Connolly and Michael (2023), the vanishing of θ′(β∗, F,G)
and θ′(γ∗, F,G) determines whether the standard estimator (DeLong et al., 1988) of the
asymptotic distribution of ∆̂ is valid. If θ′(β∗, F,G) = θ′(γ∗, F,G) = 0, the use of estimated
coefficients β̂, γ̂ does not affect the asymptotic distribution of θ or ∆, and no adjustment is
necessary. When either is nonzero, an adjustment term is required, though the asymptotic
distribution remains normal.

Here β∗ = γ∗, and so θ′(β∗, F,G) = θ′(γ∗, F,G). The first possibility is that the common
value of the gradient is nonzero, in which case the normal analysis in Doyle-Connolly and
Michael (2023) again applies. An example is when the data follow the conditionally normal
model (15) and the coefficient estimates β̂, γ̂, have a limit β∗ that is not proportional to
Σ∗−1(µ1− µ0). The limit will in fact be proportional when the estimates are obtained using
LDA, logistic regression, MRC, or the other examples given in Doyle-Connolly and Michael
(2023), but it may not be for some other coefficient estimator or a misspecified estimator.
On the other hand, if the common value is zero, (5) is of order o(1/

√
M +N),

∆(β̂, γ̂, F,G)

= (β̂ − β∗)T θ′′(F,G, β∗)(β̂ − β∗)/2 + (γ̂ − γ∗)T θ′′(F,G, γ∗)(γ̂ − γ∗)/2 + oP (|β̂ − β∗|2) + oP (|γ̂ − γ∗|2).

(6)

Complementing Doyle-Connolly and Michael (2023) this paper focuses on the second case.
Doyle-Connolly and Michael (2023), Section 5.1.1, gives numerous common examples of co-
efficient estimation procedures, such as a well-specified logistic regression, where θ′(β∗, F,G)
vanishes. Under the null β∗ = γ∗, these situations imply (6).
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The Hoeffding term (4). Further decompose (4) as

∆(β̂, γ̂, F̂ , Ĝ)−∆(β̂, γ̂, F,G)

= ∆(β̂, γ̂, δF,G) + ∆(β̂, γ̂, F, δG) (7)

+∆(β̂, γ̂, δF, δG) (8)

where δF = F̂ −F and δG = Ĝ−G. Aside from the randomness in the coefficient estimates
β̂ and γ̂, (7) constitutes the Hoeffding decomposition of the U-statistic ∆̂ (Hoeffiding, 1948)
. Assuming ∆(·, ·, δF,G) and ∆(·, ·, F, δG) are differentiable ,

∆(β̂, γ̂, δF,G) + ∆(β̂, γ̂, F, δG)

= (β̂ − β∗, γ̂ − γ∗)T (∆′(β∗, γ∗, δF,G) + ∆′(β∗, γ∗, F, δG)) + lower order terms. (9)

The second factor is an IID sum

∆′(β∗, γ∗, δF,G) + ∆′(β∗, γ∗, F, δG) =
∑
i

(
d

dβ
P (β∗TXi < β∗TY | Xi)−

d

dγ
P (γ∗TXi < γ∗TY | Xi)

)

+
∑
j

(
d

dβ
P (β∗TX < β∗TYj | Yj)−

d

dγ
P (γ∗TX < γ∗TYi | Yj)

)
(10)

so that, β̂ and γ̂ being
√
M +N -consistent, (7) is OP (1/(M +N)).

The expression (8) is usually oP (1/(M +N)) by the uniform convergence result given in
Lemma 1 and asymptotically negligible, the other terms under consideration beingOP (1/(M+
N)). The Lemma invokes concepts from empirical process theory; See Nolan and Pollard
(1987) and the references there for further elaboration.

Lemma 1. With X,Y defined as in (2), suppose h(β) = h(β, ·, ·) : X ×Y → R belongs to a
family of functions indexed by β ∈ B.

Assuming: 1. {h(β, ·, ·) : β ∈ B} has an integrable envelope, i.e., Esupβh(β, ·, ·) <∞,
2. {h(β, ·, ·) : β ∈ B} is a VC class of functions ,
3. {h(β,X, Y) : β ∈ B} is a class of degenerate U-statistics, i.e., E(h(β,X, Y) | X) =

E(h(β,X, Y) | Y) = 0 for all β,
4. M/N →p r ∈ (0,∞).
Then the process

β 7→ 1√
MN

m∑
i=1

n∑
j=1

h(β,Xi, Yj) (11)

is stochatically equicontinuous, i.e.,

lim sup
ε→0

E sup
|h(β)−h(γ)|L2<ε

∣∣∣∣∣ 1√
MN

M∑
i=1

N∑
j=1

(h(β,Xi, Yj)− h(γ,Xi, Yj))

∣∣∣∣∣ = 0.
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Proof. Rewrite h as a one-sample U-statistic on pairs of observations rather than a two-
sample U-statistic on individual observations:

1√
MN

m∑
i=1

n∑
j=1

h(β,Xi, Yj) =
1√
MN

∑
1≤i,j≤M+N,i6=j

h(β,Wi,Wj){Di < Dj}

= 2
√
MN

∑
1≤i<j≤M+N

1

2
(h(β,Wi,Wj){Di < Dj}+ h(β,Wj,Wi){Dj < Di}).

The bivariate function

(W,D), (W ′, D′) 7→ 1

2
(h(β,W,W ′){D < D′}+ h(β,W ′,W){D′ < D}) (12)

is symmetric and inherits the assumed degeneracy condition from h,

E(h(β,W,W ′){D < D′} | W,D) = E(h(β,W,W ′) | W,D,D′){D < D′}
= E(h(β,X, Y ′) | X,D = 0, D′ = 1){D < D′} = 0.

Since VC classes are closed under pairwise sums , the function (12) also inherits the VC
property from h. Nolan and Pollard (1987), Theorem 7, then gives stochastic equicontinuity
of the process

β 7→ 1

M +N

∑
1≤i<j≤M+N

1

2
(h(β,Wi,Wj){Di < Dj}+ h(β,Wj,Wi){Dj < Di}).

Since (M + N)/
√
MN →p

√
r + 1/

√
r ∈ (0, 1), stochastic equicontinuity follows for the

process (11).

Theorem 2. Given a sample (W1, D1), . . . , (WM+N , DM+N), from (1) and coefficient esti-
mates β̂, γ̂, assume

1. β∗ = γ∗,

2. Influence functions are available for β̂ and γ̂, i.e., square-integrable functions ψβ̂, ψγ̂

such that β̂ − β∗ =
∑M

i=1 ψβ̂(Wi, Di) + oP (N−1/2) and γ̂ − γ∗ =
∑M

i=1 ψγ̂(Wi, Di) +

oP (N−1/2),

3. θ(·, F,G) is twice differentiable at β∗, and the first derivative vanishes there,

4. The term ∆(·, ·, δF,G) + ∆(·, ·, F, δG) is differentiable at (β∗, γ∗).

Then, the asymptotic distribution of ∆(β̂, γ̂, F̂ , Ĝ) is the distribution of

aT b+ aT
(
θ′′(F,G, β∗) 0

0 −θ′′(F,G, γ∗)

)
a/2, (13)

where (a, b) is mean-zero multivariate normal with

a ∼ lim
√
M +N(β̂ − β∗, γ̂ − γ∗), b ∼ lim

√
M +N (∆′(β∗, γ∗, F, δG) + ∆′(β∗, γ∗, δF,G)) .
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Proof. We first show that ∆(β̂, γ̂, δF, δG) = o(1/N). Define θ0(β, x, y) : (β, x, y) 7→ ψ(βTx, βTy)−

E(ψ(βTX, βTY) | X = x) − E(ψ(βTX, βTY) | Y = y) + Eψ(βTX, βTY). The class of func-
tions {θ0(β, ·, ·) : β} is degenerate in the sense of Lemma 1 and a VC class of functions (see
(Sherman, 1993), Corollary to Theorem 4). By Lemma 1, the process mapping β to

√
MN

∫
ψ(βTx, βTy)d(F̂ − F )(x)d(Ĝ−G)(y) =

1√
MN

m∑
i=1

n∑
j=1

θ0(β,Xi, Yj)

is stochastically equicontinuous.
Given ε′ > 0, there is ε(ε′) > 0 given by bounded convergence such that |θ0(β, ·, ·) −

θ0(γ, ·, ·)|2 < ε(ε′) whenever |β − γ| < ε′. Then,

P
(

(M +N)∆(β̂, γ̂, δF, δG) > ε(ε′)
)

≤ P (|β̂ − γ̂| > ε′) + P

(
sup

|θ0(β,·,·)−θ0(γ,·,·)|2<ε(ε′)

∣∣∣∣∣ 1√
MN

M∑
i=1

N∑
j=1

(θ0(β,Xi, Yj)− θ0(γ,Xi, Yj))

∣∣∣∣∣ > ε(ε′)

)
+ o(1)

= o(1).

Since β̂, γ̂ are
√
N -consistent, the Hoeffding term ∆(·, ·, δF,G) + ∆(·, ·, F, δG) is differ-

entiable at (β∗, γ∗), and the AUC gradient θ′(·, F,G) vanishes there,

∆(β̂, γ̂, F̂ , Ĝ) = ∆(β̂, γ̂, F, δG) + ∆(β̂, γ̂, δF,G) + ∆(β̂, γ̂, δF, δG) + ∆(β̂, γ̂, F,G)

= (β̂ − β∗, γ̂ − γ∗)T (∆′(β∗, γ∗, F, δG) + ∆′(β∗, γ∗, δF,G))

+

(
β̂ − β∗
γ̂ − γ∗

)T (
θ′′(F,G, β∗) 0

0 −θ′′(F,G, γ∗)

)(
β̂ − β∗
γ̂ − γ∗

)
+ oP (1/N).

(14)

The non-negligible part of ∆(β̂, γ̂, F̂ , Ĝ) is a continuous function of

(ψβ̂, ψγ̂,∆
′(β∗, γ∗, F, δG),∆′(β∗, γ∗, δF,G))

the components of which are IID sums of terms with finite variances and jointly asymptoti-
cally normal by the CLT.

We briefly comment on the assumptions of Theorem 2. The assumption that β∗ = γ∗ is
how we have interpreted the null hypothesis ∆ = 0, as have others, e.g., Heller et al. (2017).
Influence functions are available for many common coefficient estimation procedures, though
assumption 2 does rule out coefficient estimation procedures that converge more slowly than
the parametric rate. Assumption 3 is more consequential. As noted earlier, the vanishing
or not of the gradient of the AUC determines whether a

√
M +N or M +N normalization

is appropriate. The final assumption is the differentiability of ∆(·, ·, δF,G) + ∆(·, ·, F, δG),
which shows up as Assumption A4(i) in Sherman (1993) and is implicitly assumed in Theorem
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1 of Heller et al. (2017). A simple sufficient condition is the existence of densities for X and
Y. Further conditions are discussed in Section 8 of Sherman (1993).

Finally, we compare the result presented here for the null hypothesis β∗ = γ∗ to the result
presented in Doyle-Connolly and Michael (2023) for the alternative hypothesis β∗ 6= γ∗.

1. The method. In the case of the alternative β∗ 6= γ∗ the approach taken in Doyle-
Connolly and Michael (2023) was to form first-order expansions of the AUC, and an
expansion for the difference of AUCs followed as a corollary. The analogous approach
here, where the first-order terms vanish, would be to form second-order expansions
of the AUC and then take the difference. However, the behavior of this expansion
is difficult to ascertain because of the interaction between the “mixed partials” (β̂ −
β∗)T θ′(β∗, δF,G), etc., in (9), and the quadratic Hoeffding term θ(β̂, δF, δG) in (8).
The approach taken directly targets the difference of the AUCs. It is less general but
simpler since the difference of the quadratic Hoeffding terms vanishes by Lemma 1.

2. Estimation. Estimation of the asymptotic distribution (13) is substantially more com-
plicated than the distribution under the alternative. First, the Hessian rather than
the gradient of the AUC must be estimated. Numerical methods were used in Doyle-
Connolly and Michael (2023). Second, under the null the asymptotic variance of the
Hoeffding term, denoted b in Theorem 2, and its covariance with the influence func-
tions, a in Theorem 2, must be estimated.

4 Estimation

Specification of the asymptotic null distribution (13) in general requires

1. the Hessian of the AUC at β∗,

2. an influence function for the coefficient estimation procedure, and

3. the variance matrix for the combined influence functions for β̂ and γ̂ and the Hoeffding
gradient (4)

(a) the variance of the Hoeffding gradient, and

(b) the variance matrix of the influence functions

(c) the matrix of covariances between the Hoeffding gradient (4) and the coefficient
estimates.

The Hessian of the AUC and the variance matrix of the Hoeffding gradient are common
to any model with the same covariate distribution. The influence function and moments
involving the coefficient estimates must then be obtained based on the chosen coefficient
estimation procedure. Below we describe parametric and non-parametric estimation of these
quantities.
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4.1 Parametric estimation

We compute the asymptotic distribution for ∆̂ given by Theorem 2 assuming that the covari-
ates (1) belong to a parametric family. Although parametric assumptions are too strong for
many applications, this analysis will show the types of quantities that need to be estimated
in the non-parametric setting, as well as provide a benchmark for non-parametric estimation
in the simulations below.

We model the covariates in each class as normally distributed,

W|D = d ∼ Fd = Np(µd,Σd),Σd > 0, d ∈ {0, 1}, µ1 6= µ0

P (D = 1) = 1− P (D = 0) = π1.
(15)

We use the normal model for two principal reasons. The first is that it leads to closed form
expressions for many of the quantities involved in the asymptotic distribution. The second
is that it contains a sub-model that may be viewed as a well-specified LDA model or well-
specified logistic regression model, the latter of which belongs to the class of generalized
regression models proposed by Han (1987). The last point makes the normal model particu-
larly suitable for this study since the two models mentioned are the two cases of parametric
approaches to testing H0 : ∆ = 0 known to us from the literature: 1) normal covariates and
LDA coefficients (Demler et al., 2011) and 2) unspecified covariates with the MRC estimator
for the coefficients (Heller et al., 2017). These are re-analzyed below in Section 4.1.2 for
MRC and 5 for LDA. In both, it is supposed that the coefficients are nested. That is, γ̂ is
formed based on the full vector of covariates W whereas β̂ is based on a subset, while the
null hypothesis β∗ = γ∗ holds for the probability limits β∗ = lim β̂, γ∗ = lim γ̂. This setup
is commonly used for testing if there is any improvement in discrimination provided by the
additional covariates.

Formulas for the conditionally normal model (15) are given in Proposition 3, correspond-
ing to items 1 and 3a in the list of parameters to be estimated. The remaining parameters
involve the coefficient estimation procedure and are given in Propositions 4 and 6 below for
LDA and MRC, respectively.

Proposition 3. Under the conditionally gaussian model (15),

1. The Hessian of the AUC is d2

dβ2 θ(β, F,G) = u′′(β,Σ0 + Σ1, µ), where, for β ∈ Rp, w ∈
Rp,Σ ∈ Rp×p u : (β,Σ, w) 7→ Φ(βTw/

√
βTΣβ). At β = cΣ−1µ, c ∈ R, c 6= 0, the

Hessian takes the form

d2

dβ2
P (βTX < βTY)

∣∣∣∣
β=cΣ−1µ

= φ(c−1√q)c−1q−1/2(q−1ΣββTΣ− Σ).

2. The Hoeffding gradient d
dβ

(θ(β, F, δG)− θ(β, δF,G)) is

N−1

N∑
i=1

u′(β,Σ0, Yi − µ0) +M−1

M∑
i=1

u′(β,Σ1, µ1 −Xi)− 2u′(β, µ,Σ)

9



with u as above, and its variance is given by

N−1J3(β, µ,Σ1,Σ0) +M−1J3(β, µ,Σ0,Σ1)− (M−1 +N−1)u′(β, µ,Σ)⊗2,

where for d ∈ {0, 1},

J3 : (β, µ,Σ1−d,Σd) 7→
(
J1/2 + (βTJ1β)/(2q2

d)Σdββ
TΣd − (Σdββ

TJ1 + J1ββ
TΣd)/(2qd)

)
/
√

2π,

and J1 = J1(β,
√

2q−1
d µ, 2q−1

d Σ1−d), qd = βTΣdβ, q = βT (Σ0 + Σ1)β, where

J1 : (β, µ,Σ) 7→ φ(
βTµ√
1 + q

)
1√

1 + q
((µ− βTµ

1 + q
Σβ)(µT − βTµ

1 + q
βTΣ) + Σ− (Σβ)⊗2

1 + q
).

Proof. These formulas can be demonstrated using standard manipulations with the gaussian
PDF and CDF. The quantities J1 and J3 defined above carry the interpretations

J1(β, µ,Σ) = E(φ(βTW )WW T ) for W ∼ N(µ,Σ)

J3(β, µ,Σ0,Σ1) = E(u′(β,Σ1,W)⊗2) for W ∼ N(µ,Σ0).

4.1.1 LDA for coefficient estimation

Linear discriminant analysis builds a rule that classifies a new sample w as control or case
based on the sign of β̂TLDAw. The coefficients are computed as

β̂LDA = Σ̂−1(µ̂1 − µ̂0), where

µ̂1 − µ̂0 = N−1
∑
i

Yi −M−1
∑
i

Xi

Σ̂ = (M +N)−1

(∑
i

(Xi − µ̂0)(Xi − µ̂0)T +
∑
i

(Yi − µ̂1)(Yi − µ̂1)T
)
.

An intercept is usually computed when carrying out LDA but may be ignored here since
the AUC does not change when both classes undergo a common shift. The LDA parameter
estimates tend in probability to

β∗ = Σ∗−1(µ1 − µ0)

Σ∗ = π0Σ0 + π1Σ1

These probability limits do not lead to the optimal classification rule for normal data unless
the class covariances Σ0 and Σ1 are equal, which is a usual assumption of LDA. However,
the conclusion of Theorem 2 does not depend on the correct specification of the coefficient
model. The conclusion only depends on the asymptotic variance at whatever the probability
limit of the estimates may be.

Proposition 4 gives formulas for the terms in (13) that are specific to the LDA procedure.
In comparing nested that are nested under the null, β∗ is a proper subset of the components
of γ∗. Subscripts “β” and “γ” on vectors indicate the vector formed from the restricted
or full set of components. Likewise, “ββ”, “βγ”, etc. subscripts on matrices subset the
corresponding rows and columns.
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Proposition 4. 1. Influence functions for the LDA coefficient estimates based on full
and restricted samples are given by

ψγ̂ : (w, d) 7→
∑
i=0,1

π−1
i {d = i}

(
Σ∗−1w + πiΣ

∗−1(w − µi)⊗2Σ∗−1µ)
)

ψβ̂ : (w, d) 7→ (Σββ)−1Iβγψγ̂(w, d),

with variances under model (15) given by

Var(ψγ̂(W,D)) = Σ∗−1(Σ0/π0 + Σ1/π1)Σ∗−1

+ Σ∗−1

(∑
d=0,1

(πd(Σdβ
∗β∗TΣd + (β∗TΣdβ

∗)Σd))

)
Σ∗−1

Var(ψβ̂(W,D)) = (Σββ)−1Iβ Var(ψγ̂(W,D))ITβ (Σββ)−1

Cov(ψβ̂(W,D), ψγ̂(W,D)) = (Σββ)−1Iβ Var(ψγ̂(W,D)).

2. The covariance between the influence function for the coefficient estimate under model
(15) and the Hoeffding gradient at β∗ is

Cov(ψγ̂(W,D),
d

dβ
(θ(β∗, F, δG)− θ(β∗, δF,G)))

=
∑
d=0,1

√
qdΣ

∗−1(I + πd(µβ
∗T + µTβ∗I))

(
J1(β∗,

µ
√
q1−d

,
Σd

q1−d
)− µ
√
q1−d

J ′4(d)

)
(β∗β∗T

Σ1−d

q1−d
− I)

−
∑
d=0,1

πdΣ
∗−1q1−d

(
J ′′4 (d)− (

Σd

q1−d
+ µ⊗2q1−d)βJ

′
4(d)

)
(β∗β∗T

Σ1−d

qd
− I),

Cov(ψβ̂(W,D)),
d

dβ
(θ(β∗, F, δG)− θ(β∗, δF,G)))

= (Σββ)−1Iβ Cov(ψγ̂(W,D),
d

dβ
(θ(β∗, F, δG)− θ(β∗, δF,G))),

where J1 is as in Proposition 3, J4 : (β, µ,Σ) 7→ Φ(βTµ/
√

1 + βTΣβ), primes indi-
cate differentiation with respect to β, and for d ∈ {0, 1}, J4(d), J ′4(d), J ′′4 (d) above are
evaluated at (β∗, µ√

q1−d
, Σd

q1−d
).

4.1.2 MRC for coefficient estimation

When the class covariance matrices in (15) are equal, Σ0 = Σ1, the conditionally normal
model is also a logistic model,

P (D = 1 | W) =
π1G

′(w)

π0F ′(w) + π1G′(w)

= expit(log(π0/π1) + (µ0Σµ0 − µ1Σµ1)/2− βTLDAw)),
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with βLDA defined as in Section 4.1.1. The logistic model belongs to a larger family of
parametric regression models proposed by Han (1987). These models relate a vector of
covariates W to a response D, which need not be binary. As an estimator for the parameter
Han proposed the maximum rank correlation. When D is in fact binary, as here, the MRC
takes the form

β̂MRC = arg max
β:β1=1

θ(β, F̂ , Ĝ) (16)

That is, the estimator maximizes the empirical AUC subject to its first component being 1.
Without some type of normalization the maximization isn’t well-posed as P (βTX < βTY) =
P (cβTX < cβTY), c > 0, and we follow Heller et al. (2017) and others in setting the first
component to be 1. Han (1987); Sherman (1993) gives conditions under which the MRC is
consistent, i.e., β∗ = βLDA, and aymptotically normal. For the conditionally normal model
(15) consistency follows from Lemma 5.

Lemma 5. In the normal model (15) with Σ = Σ0 = Σ1

1. The only stationary points of the AUC θ(β, F,G) are given by β ∝ Σ−1(µ1 − µ0),
and there is a unique stationary point β∗ such that the first component is equal to 1,
permuting the components of β∗ if necessary.

2. The Hessian of the AUC at a stationary point β∗ with first component equal to 1,
θ′′(β∗, F,G), after removing the first row and column, is negative definite, switching
the class labels if necessary.

Proof. 1. The gradient of the AUC

d

dβ
u(β,Σ, µ) = φ(

βTµ√
βTΣβ

)
1√
βTΣβ

(I − ΣββT

βTΣβ
)µ

is equal to 0 iff µ lies in the nullspace of I − ΣββT/βTΣβ. An example of such is µ ∝ Σβ
and since I − ΣββT/βTΣβ has rank ≥ p − 1 this is the only example. Let β∗ = cΣ−1µ
with c ∈ R, c > 0, chosen so that the first component of β∗ is 1. Such a c can be found by
switching the class labels if all components of β∗ are ≤ 0, and then by permuting the indices
of β∗ so that the first component is > 0, if it isn’t already.

At β∗, θ′′(β∗, F,G) takes the form given in Prop. 3. Given x ∈ Rp, by the Cauchy-
Schwarz inequality,

xtθ′′(β∗, F,G)x = φ(

√
β∗TΣβ∗/c)/c/(β∗TΣβ∗)3/2((β∗TΣx)2 − (β∗TΣβ∗)(xtΣx)) ≤ 0

and = 0 iff x ∝ β∗. Then θ′′(β∗, F,G) with the first row and column removed must be
negative definite as otherwise the nullspace contains a vector with first component equal
to 0, which cannot be proportional to β∗ given the requirement that the latter has first
component equal to 1.

Corresponding to Proposition 4, Proposition 6 gives formulas for the terms in the asymp-
totic distribution (13) for ∆̂ that involve the MRC coefficient estimates.
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Proposition 6. 1. An influence functions for the MRC estimate β̂ is given by

ψβ̂ : (w, d)

7→ −θ′′(β∗, F,G)−1(π−1
0

d

dβ
E(ψ(βTw, βTY) | w){d = 0}+ π−1

1

d

dβ
E(ψ(βTX, βTw) | w){d = 1}),

with variance matrix under the normal model (15)

Var(ψβ̂(W,D)) = θ′′(β∗, F,G)−1 Var(θ′(β∗, F, δG) + θ′(β∗, δF,G))θ′′(β∗, F,G)−1.

Formulas for the above quantities are given in Proposition 3. Analogous expression for
the influence function of γ̂ and its covariance matrix by substituting above γ̂ for β̂, γ∗

for β∗. The asymptotic covariance between the influence functions for β̂ and γ̂ is given
by

Cov(ψβ̂(W,D), ψγ̂(W,D)) = θ′′(β∗, Fβ, Gβ)−1 Var(θ′(β∗, F, δG) + θ′(β∗, δF,G))βγθ
′′(γ∗, Fγ, Gγ)

−1

−θ′′(β∗, Fβ, Gβ)−1u′(β∗,Σβ, µβ/
√

2)u′(γ∗,Σγ, µγ/
√

2)T θ′′(γ∗, Fγ, Gγ)
−1.

2. The covariances between the influence functions and the Hoeffding gradient at β∗ are
given by

Cov(ψβ̂(W,D),
d

dβ
(θ(β∗, F, δG)− θ(β∗, δF,G))) = Cov(ψβ̂(W,D), ψγ̂(W,D))θ′′(γ∗, Fγ, Gγ)

Cov(ψγ̂(W,D),
d

dβ
(θ(β∗, F, δG)− θ(β∗, δF,G))) = Var(ψγ̂(W,D))θ′′(γ∗, Fγ, Gγ).

Proof. 1. From (14),

θ(β, F̂ , Ĝ)− θ(β∗, F̂ , Ĝ)

=
1

2
(β − β∗)T θ′′(β∗, F,G)(β − β∗) + (β − β∗)t(θ′(β∗, F, δG) + θ′(β∗, G, δF )) + oP (1/N).

Viewing the above expressions as functions of β, Sherman (1993), Theorem 2, asserts
that the maximizer of the left-hand side, i.e, β̂, is within oP (1/

√
N) of the maximizer of

the approximating quadratic on the right-hand side, i.e., β∗−θ′′(β∗, F,G)−1(θ′(β∗, F, δG)+
θ′(β∗, G, δF )), which is to say

β̂ − β∗ + θ′′(β∗, F,G)−1(θ′(β∗, F, δG) + θ′(β∗, G, δF )) = oP (1/
√
N).

The assumptions of the cited theorem are verified by Lemma 5. The other sub-parts
are straightforward, e.g., the formula for the covariance follows as u′(β∗β,Σβ, wβ) is just
the first pβ rows of u′(β∗γ ,Σγ, wγ).
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As the maximizer of the index AUC, there is a sense in which the MRC (16) is more
closely related to the index AUC than other coefficient estimators such as LDA and logistic
regression. It turns out that the error in ∆̂ due using to the empirical rather than true AUC
(4) is asymptotically the same error due to the use of MRC estimates (5) rather than their
probability limit. This fact can be derived from the form of the influence function given by
Prop. 6 and does not rely on the normality assumption (15). Thus we recover a simplified
expression for the asymptotic distribution of ∆ whenever the coefficient estimation procedure
is MRC, previously given by Heller et al. (2017). The calculation given here avoids the cited
proof’s appeal to an expansion justified only heuristically and then only in the case that the
coefficient estimate is an MLE.

Corollary 7 (Heller et al. (2017)). Suppose the assumptions of Theorem 2 hold, and further
that the MRC estimator (16) is

√
M +N-consistent for the maximizer of the AUC. Then the

asymptotic distribution of ∆̂(β̂, γ̂, F̂ , Ĝ) is the distribution of 1
2
aT b, with a and b defined as

in Theorem 2; equivalently, the distribution of
∑
λiχ

2
i where χi are independent chi-squared

random variables and λi are the eigenvalues of ((θ′′−1)γ/β)−1(lim Var(
√
Nγ̂))γ/β,γ/β.

Proof. By Prop. 6,

a = lim
√
N(β̂ − β∗, γ̂ − γ∗) = − lim

√
N((θ′′ββ)−1∇β, (θ

′′)−1∇)

b = lim
√
N(∇β,−∇)

aT b = lim−n(∇β
T (θ′′ββ)−1∇β −∇(θ′′)−1∇) = −aT

(
θ′′ 0
0 −θ′

)
a

so aT b + 1
2
aT
(
θ′′ 0
0 −θ′

)
a = 1

2
aT b = −1

2

(
∇β

T (θ′′ββ)−1∇β −∇T (θ′′)−1∇
)
. Letting S = D −

BTA−1B denote the Schur complement of A in θ′′, the last expression may be written as

−1

2
|S−1/2(BTA−1∇β −∇γ/β)|2. (17)

Finally, since∇ = −θ′′(γ̂−γ∗)+oP (N−1/2) is asymptotically normal with variance θ′′ lim Var(
√
Nγ̂)θ′′,

BTA−1∇β −∇γ/β is asymptotically normal with variance

S(lim Var(
√
Nγ̂))γ/β,γ/βS = ((θ′′−1)γ/β)−1(lim Var(

√
Nγ̂))γ/β,γ/β((θ′′−1)γ/β)−1. (18)

It follows after diagonalizing the variance that the quadratic form (18) is the same as the
stated combination of chi-squared random variables.

By (17) of the proof, the asymptotic distribution of ∆̂ is non-positive. That is, with
MRC the difference of AUCs can only increase or stay the same with additional covariates.

4.2 Non-parametric estimation

We next describe an approach to non-parametrically estimate the asymptotic distribution
(13) of the difference in AUCs. Suppose we are given a sample of covariates and binary
statuses, (W1, D1), . . . , (WM+N , DM+N), and a coefficient estimation procedure, in the form
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of influence functions ψβ̂ and ψγ̂. Based on this sample we estimate (13) using numerical
derivatives and empirical moments.

The asymptotic variance of β̂ and γ̂ may be approximated from the influence function,
i.e., the empirical variance of

ψβ(W1, D1), . . . , ψβ(WM+N , DM+N). (19)

Terms in the Hoeffding gradient (10)

d

dβ
P (β∗TXi < β∗TY | Xi), i = 1, . . . ,M,

d

dβ
P (β∗TX < β∗TYj | Yj), j = 1, . . . , N

may be approximated by numerically differentiating

β 7→ PĜ(βTXi < βT ·) = N−1

N∑
j=1

{βTXi < βTYj}, i = 1, . . . ,M,

β 7→ PF̂ (βT · < βTYj) = M−1

M∑
i=1

{βTXi < βTYj}, j = 1, . . . , N

(20)

at β = β̂. The gradient at γ∗ may be estimated likewise. The variance of the Hoeffding
gradient is estimated as the empirical variance of (20). The covariance of the Hoeffding
gradient and coefficient estimates is estimated as the empirical covariance between (19) and
the numerical derivatives of (20). Finally, the Hessian of the AUC is estimated numerically
using the empirical AUC at β̂.

The simulations below use a simple finite difference approximation for the Hessian and
the terms of the Hoeffding gradient. For example, the i, j component of

d2

dβ2
θ(β, F,G)|β=β∗

is estimated by

(2ε)−2(θ(β̂ + εei + εej, F̂ , Ĝ) + θ(β̂ − εei + εej, F̂ , Ĝ)+

θ(β̂ + εei − εej, F̂ , Ĝ) + θ(β̂ − εei − εej, F̂ , Ĝ)),
(21)

where ei, ej are standard basis vectors in Rp and ε is small in magnitude. Since (21) is a step
function, the step size ε used in the finite difference approximation must be chosen with care.
A plot of the empirical AUC along lines through β̂ helps in determining the appropriate scale.
Similar remarks apply to computation of the numerical gradients in (20). More quantitative
guidance is given in Section 7 of Sherman (1993), which discusses non-parametric estimation
of similar quantities, or Chay and Honore (1998), which applies these methods to a data set.
The performance of the estimates is examined below using synthetic data.
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5 Simulation

We examine the finite-sample performance of the parametric and non-parametric estimators,
first checking empirical CDFs and then turning to error rates of tests based on the estimators.
We consider two methods of coefficient estimation, LDA and logistic regression.

The normal covariate formulas given in Proposition 3 and the LDA coefficient estimation
formulas given in Proposition 4 can be substituted into Theorem 2’s formula for the asymp-
totic distribution of ∆̂. Assumption 4 follows from Prop. 3, Assumption 2 from Prop 6, and
Assumption 3 from Lemma 5. The result is an “oracle estimator” for the asymptotic distri-
bution, giving a benchmark for the performance of actual estimators and isolating the effect
of the asymptotic distributional approximation from the estimation of nuisance parameters.
A parametric estimator is obtained by substituting β̂ for β∗, and empirical estimates for µd
and Σd, d = 0, 1. Finally, a non-parametric estimator is obtained under the approach of
Section 4.2.

Convenient expressions such as given in Section 4.1.1 for LDA are not available for logistic
regression, so only the non-parametric estimator from among the proposed estimators is
presented here. Logistic regression is included because of its popularity in applied work and
because past literature has frequently noted the lack of a valid test of the null H0 : ∆ = 0,
e.g., Heller et al. (2017); Lee (2021).

5.1 Distributions

Figure 1a plots the empirical CDF for a synthetically generated sample of the difference in
AUCs using LDA, along with the oracle, parametric, and non-parametric estimates of the
CDF. The total number of controls and cases are 50 (left panel) and 150 (right panel), in
a 2:1 ratio in both panels. The parametric and non-parametric estimates are formed as an
average of estimated CDFs based on 500 samples. In Figure 1b the empirical CDF for a
sample using logistic regression is plotted along with an average of non-parametric estimates
of the CDF. A 95% pointwise confidence band based on the sampled CDFs is also given.

5.2 Error rates

Under the LDA model of Section 4.1.1, the null hypothesis of equality of the full and reduced
model AUCs is, by Prop. 3,

H0 : Φ(β∗T (µ1 − µ0)/

√
β∗T (Σ0 + Σ1)β∗) = Φ(γ∗T (µ1 − µ0)/

√
γ∗T (Σ0 + Σ1)γ∗)

which is the same as equality of the Mahalanobis distances between the indexes for the
control and case classes in the full and reduced models. As Demler et al. (2011) point out,
when the class covariances are equal, Σ0 = Σ1, the scaled difference of the Mahalonobis
distances follows an F-distribution under the null of no difference. In Figure 2a the rejection
rate of a nominal 95% test of H0 : ∆ = 0 based on the F-statistic is compared with a
test based on the asymptotic CIs given by Theorem 2. Under the null, β∗ has 4 non-
zero components γ∗ has 2 additional components set to 0. The alternatives are formed by
increasing the common value of these 2 components. The F-test and the tests baesd on the

16



oracle and non-parametric estimators perform best. Somewhat suprisingly, the test based on
the parametric estimator has difficulty controlling the false positive rate. As this estimator
differs from the oracle estimator only in using estimates of simple nuisance parameters, this
poor performance improves with sample size. The Delong test has low power which does
not improve with increased sample size. The poor power of the Delong test prompted initial
research into valid tests for the difference in AUCs based on fitted values; compare Figure 3
of Demler et al. (2012).

Fig. 2b presents the error rate analysis for logistic regression. The non-parametric
estimator’s FPR is slightly higher than the nominal rate at M + N = 50 but is controlled
at M + N = 150. As with LDA, the Delong test has poor power which cannot improve
much with sample size as it is based on an incorrect asymptotic distribution and rate of
convergence.

6 Discussion

We have presented the asymptotic null distribution of the difference of index AUCs under
general conditions. This analysis complements the simpler analysis given in Doyle-Connolly
and Michael (2023), which covers the cases that the asymptotic distribution is normal.
However, we have not discussed how an analyst, presented with a single data sample, might
determine which of the two regimes applies without making too many assumptions. Doyle-
Connolly and Michael (2023) show that the limit is non-normal under many common well-
specified models, but relying on these examples in practice introduces parametric assump-
tions. A conservative approach is to form CIs under both approaches, i.e., assuming first the
normal then the non-normal limit. A more refined approach requires further work.

References

Chay, K. Y. and B. E. Honore (1998). Estimation of semiparametric censored regression
models: an application to changes in black-white earnings inequality during the 1960s.
Journal of Human Resources , 4–38.

DeLong, E. R., D. M. DeLong, and D. L. Clarke-Pearson (1988). Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric approach.
Biometrics , 837–845.

Demler, O. V., M. J. Pencina, N. R. Cook, and R. B. D’Agostino Sr (2017). Asymptotic distri-
bution of δauc, nris, and idi based on theory of u-statistics. Statistics in Medicine 36 (21),
3334–3360.

Demler, O. V., M. J. Pencina, and R. B. D’Agostino Sr (2011). Equivalence of improvement
in area under roc curve and linear discriminant analysis coefficient under assumption of
normality. Statistics in medicine 30 (12), 1410–1418.

Demler, O. V., M. J. Pencina, and R. B. D’Agostino Sr (2012). Misuse of delong test to
compare aucs for nested models. Statistics in medicine 31 (23), 2577–2587.

17



Doyle-Connolly, A. and H. Michael (2023). Nonparametric estimation of the
auc of an index with estimated parameters. Forthcoming; available at
https://www.umass.edu/mathematics-statistics/directory/faculty/haben-michael.

Han, A. K. (1987). Non-parametric analysis of a generalized regression model: the maximum
rank correlation estimator. Journal of Econometrics 35 (2-3), 303–316.

Heller, G., V. E. Seshan, C. S. Moskowitz, and M. Gönen (2017). Inference for the dif-
ference in the area under the roc curve derived from nested binary regression models.
Biostatistics 18 (2), 260–274.

Hoeffiding, W. (1948). A class of statistics with asymptotically normal distributions. Annals
of Mathematical Statistics 19 (3), 293–325.

Lee, C. Y. (2021). Nested logistic regression models and ∆AUC applications: Change-point
analysis. Statistical Methods in Medical Research 30 (7), 1654–1666.

Nolan, D. and D. Pollard (1987). U-processes: rates of convergence. The Annals of Statistics ,
780–799.

Pepe, M. S., K. F. Kerr, G. Longton, and Z. Wang (2013). Testing for improvement in
prediction model performance. Statistics in medicine 32 (9), 1467–1482.

Seshan, V. E., M. Gönen, and C. B. Begg (2013). Comparing ROC curves derived from
regression models. Statistics in medicine 32 (9), 1483–1493.

Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator.
Econometrica: Journal of the Econometric Society 61 (1), 123–137.

Tzoulaki, I., G. Liberopoulos, and J. P. Ioannidis (2009). Assessment of claims of improved
prediction beyond the framingham risk score. JAMA 302 (21), 2345–2352.

18



(a)

(b)

Figure 1: Observed CDF of the difference of AUCs of nested models with estimated CDFs
overlaid. Shown in Fig. (1a) are the oracle CDF (solid line), parametric CDF (dashed line),
and non-parametric CDF (dotted line). In (1b) the non-parametric CDF (dotted line) is
given along with a 95% pointwise confidence band. The observed data is generated synthet-
ically with the covariates modeled as normal and LDA used for the coefficient estimation.
The true parameter β∗ has 4 nonzero components and 2 additional components set to 0,
corresponding to spurious covariates.

19



(a)

(b)

Figure 2: Observed rejection rate of several tests of the null H0 : ∆ = 0 with conditionally
gaussian data, and (2a) LDA and (2b) logistic regression for coefficient estimation. The
tests in (2a) are the proposed oracle asymptotic test (solid line), parametric asymptotic test
(short dashes), and non-parametric asymptotic test (dotted line), the F-test given in Demler
et al. (2011) (broken line), and the standard test of DeLong et al. (1988) (long dashes). The
tests in (2b) are the proposed non-parametric asymptotic test (solid line) and the standard
Delong test (dashed line).
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