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Summary: Begg and Mazumdar proposed using a rank correlation test to test for publication

bias when carrying out meta-analyses. The asymptotic variance of the rank correlation test

statistic was derived under assumptions unmet by this application, often resulting in a loss

of power. Low power when Begg’s test is used to screen for publication bias may lead to false

positives in a subsequent meta-analysis. We obtain the asymptotic bias under the common

conditionally normal model as a function of the distribution of primary study variances.

In simulations we consider the performance of Begg’s test using an approximation to the

correct asymptotic variance. We consider this performance under the common fixed effects

and random effects frameworks. We then examine several meta-analyses drawn from the

literature where the standard and bias-corrected versions of Begg’s test lead to different

conclusions.
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1 Introduction

Meta-analysis is a popular technique for summarizing a body of studies. Key to the soundness

of the approach is that the body of studies used in forming the summary be representative

of the studies conducted. This requirement may fail to be met when publication bias is

present, that is, when the availability of a study is tied to its findings (Begg 1994). Several

hypothesis tests have been proposed with the goal of identifying the presence of publication

bias on the basis of the relationship between the conclusion of the study and various study

characteristics.

Common to these tests is that the null is held to be no publication bias. A typical

conservative analyst might be expected to treat the presence of publication bias as the null.

Given the manifold sources of publication bias, devising a test under such a null does not

appear practical. The result of taking the null to be the absence of publication bias, however,

is that Type II errors in the test for publication bias will often correspond to Type I errors

in the subsequent meta-analysis. Assessing and improving the power of the screening test is

therefore worthwhile.

One of the most common tests for publication bias, Begg’s test (Begg and Mazumdar

1994), tests for correlation between the studies’ reported effect sizes and their standard

errors. An issue with Begg’s test procedure is that it uses the asymptotic variance for a

general correlation test derived under assumptions unmet by Begg’s test. This nominal

variance is often larger than the correct variance, as discussed below. As a result, the test

does not reject as frequently as it ought, which, as mentioned above, is likely to lead to Type

I error in the meta-analysis for which the publication bias test is being performed.

This issue with Begg’s test has been noted previously, including by the author of the test

(Begg 1994; Begg and Mazumdar 1994). More recently, Gjerdevik and Heuch (2014) showed

that the observations forming the input to the rank correlation test are correlated, so that

the usual assumptions for the test are not met. Since the rank correlation test depends on an

asymptotic approximation, this criticism isn’t entirely fair unless the effect of the correlation
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does not vanish in the limit, as we show.

The remainder of the paper is organized as follows. In Sections 2.1 and 2.2, we describe

Begg’s test in greater detail and identify the source of bias. In 2.3 we discuss the direction

of the bias and relate it to the error rates of the test, and in Section 2.4 we present the form

of the bias in the normal model assumed by Begg and Mazumdar (1994). In Section 3, we

contrast the power of Begg’s test as standardly used and a debiased version, using simulated

data. In Section 4, we examine three meta-analyses drawn from biomedical literature in

which the standard and debiased versions of Begg’s test, applied in a hypothesis testing

framework, offer diverging conclusions.

2 Asymptotic bias of Begg’s test

2.1 Description of test

Begg’s test is a test of correlation between the reported effect sizes and their reported vari-

ances. The premise is that a tendency to publish larger effect sizes induces a trend in effect

sizes across their variances, and no such trend exists without selection. See Fig. 1 for an

illustration.

The data consists of independent pairs (Y1, σ1), . . . , (Yn, σn), representing the estimated

effect sizes and sampling variances of n studies with a common mean effect size, say θ:

E(Yj | σj) = θ, j = 1, . . . , n

Var(Yj | σ2
j ) = σ2

j .

(1)

The null is that Yj is uncorrelated with σj, j = 1, . . . , n. The test statistic is Kendall’s rank

correlation coefficient,

τ̂ = 2

(
n

2

)−1∑
j<k

{(Uj − Uk)(Vj − Vk) > 0} − 1,
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applied to the sequence of pairs (Uj, Vj) given by the data after standardizing the effect sizes,

(Uj, Vj) =

 Yj − θ̂√
σ2
j − σ2

θ̂

, σj

 , j = 1, . . . , n,

where

θ̂ = (
n∑
j=1

Yj/σ
2
j )/(

n∑
j=1

1/σ2
j ),

σ2
θ̂

= 1/
n∑
j=1

(1/σ2
j ).

(2)

The mean estimate θ̂ = (
∑n

j=1 Yj/σ
2
j )/(

∑n
j=1 1/σ2

j ) is the inverse-variance weighted estimate

of the common study mean θ and σ2
θ̂

= 1/
∑n

j=1(1/σ2
j ) is its variance, both conditional on the

study variances. The test statistic counts the number of corresponding pairs of studentized

effect sizes Uj = (Yj − θ̂)/
√
σ2
j − σ2

θ̂
and variances Vj = σj that concord in the sense that

either Uj < Uk and Vj < Vk or Uj > Uk and Vj > Vk. The null of no correlation is to be

interpreted as no publication bias, and is rejected at level α when
√

9n/4|τ̂ | > Φ−1(1−α/2).

The asymptotic null variance 4/9 is derived under the assumption that the pairs form an

IID sequence. This assumption does not hold for the pairs (2) due to the common terms θ̂

and σ2
θ̂
. While the latter is of order 1/n and typically negligible in the limit, the dependence

induced by the summary statistic θ̂, ordinarily of order 1/
√
n, must be accounted for in

computing the asymptotic null variance of
√
nτ̂ .

2.2 Source of bias

The variance of
√
nτ̂ is

Var(
√
nτ̂) = 4n

(
n

2

)−2 ∑
i<j,k<l

Cov({(Ui − Uj)(Vi − Vj) > 0}, {(Uk − Ul)(Vk − Vl) > 0}).
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The sum has
(
n
2

)(
n−2

2

)
terms where i, j, k, l are all distinct, 6

(
n
3

)
terms where the set {i, j, k, l}

has size 3, and
(
n
2

)
terms where |{i, j, k, l}| = 2:

Var(
√
nτ̂) = 4

(n− 2)(n− 3)

n− 1
Cov({(U1 − U2)(V1 − V2) > 0}, {(U3 − U4)(V3 − V4) > 0})

+ 16
n− 2

n− 1
Cov({(U1 − U2)(V1 − V2) > 0}, {(U1 − U3)(V1 − V3) > 0}) +O(1/n).

The second term on the right-hand side, with the O(1) coefficient, converges in probability

to

16 · Cov

({(
Y1 − θ
σ1

− Y2 − θ
σ2

)
(σ1 − σ2) > 0

}
,

{(
Y1 − θ
σ1

− Y3 − θ
σ3

)
(σ1 − σ3) > 0

})
= 4/9,

the usual asymptotic variance of Kendall’s τ under the null that Uj and Vj are independent,

j = 1, . . . , n. The first term on the right-hand side, with an O(n) coefficient, is a source of

bias if the covariance

Cov({(U1 − U2)(V1 − V2) > 0}, {(U3 − U4)(V3 − V4) > 0}) =

Cov


 Y1 − θ̂√

σ2
1 − σ2

θ̂

− Y2 − θ̂√
σ2

2 − σ2
θ̂

 (σ1 − σ2) > 0

 ,


 Y3 − θ̂√

σ2
3 − σ2

θ̂

− Y4 − θ̂√
σ2

4 − σ2
θ̂

 (σ3 − σ4) > 0




(3)

does not vanish faster than 1/n. The false positive rate of Begg’s test will exceed or fall

below the nominal level when the direction of the bias is negative or positive, respectively,

i.e., when the covariance (3) is positive or negative.
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2.3 Direction of bias

Shifting the data if necessary, assume in (1) that the common mean θ is 0, and suppose that

Yj/σj has a fixed distribution, say FZ , i.e., Y1, . . . , Yn belong to a scale family. Lemma 1

states that the O(1/n) terms σ2
θ̂

in (2) may often be ignored under this assumption. While

the condition on the density of Z excludes some common densities that diverge quickly, e.g.,

symmetric beta distributions with common shape parameter ≤ 1/2, it is required anyway

for the general result (6) presented below.

Lemma 1. Given pairs (Y1, σ1), . . . , (Yn, σn) such that Zj = Yj/σj, j = 1, . . . , n, are IID,

assume

1. there are b, B ∈ R such that 0 < b < 1
n

∑n
j=1 1/σ2

j < B <∞,

2. σ1, . . . , σn, are distinct, and

3.
∫∞
−∞ fZ(z)2dz <∞.

Then conditional on σ1, . . . , σn,

∣∣∣∣∣
(
n

2

)−1∑
j<k

{(
Yj − θ̂
σj

− Yk − θ̂
σk

)
(σj − σk) > 0

}
− τ̂

∣∣∣∣∣ = oP (n−1/2).

Besides the scale family assumption, suppose further that FZ is the distribution of a

symmetric random variable. Let S2 = 1/σ2 denote the study precisions. In summary,

Z1, . . . , Zn
IID∼ FZ

S1, . . . , Sn
IID∼ FS

Zj ∼ −Zj,

Zj | Sj ∼ Zj,

Yj = Zj/Sj, j = 1, . . . , n.
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The test statistic may be written in terms of Z and S as

τ̂ =
∑
j<k

{
Zj − Zk
Sj − Sk

> θ̂

}
.

The covariance (3) determining the bias of the asymptotic variance relative to 9/4 is

Cov

({
Z1 − Z2

S1 − S2

> θ̂

}
,

{
Z3 − Z4

S3 − S4

> θ̂

})
.

The grand mean estimate θ̂ =
∑

j ZjSj/
∑
S2
j induces dependence between the two terms

in the covariance. By the symmetry of FZ , P ({ zj−zk
sj−sk

> θ̂} = 1/2, so the last expression is

E

({
Z1 − Z2

S1 − S2

> θ̂

}{
Z3 − Z4

S3 − S4

> θ̂

})
− 1/4 = P

(
Z1 − Z2

S1 − S2

∧ Z3 − Z4

S3 − S4

> θ̂

)
− 1/4.

The symmetry of FZ further implies that {Z1−Z2

S1−S2
> θ̂}{Z3−Z4

S3−S4
> θ̂} has the same distribution

as {Z1−Z2

S1−S2
< θ̂}{Z3−Z4

S3−S4
< θ̂}, so the condition for a positive bias, E({Z1−Z2

S1−S2
> θ̂}{Z3−Z4

S3−S4
>

θ̂}) < 1/4, is

1/2 > P

({
Z1 − Z2

S1 − S2

> θ̂

}{
Z3 − Z4

S3 − S4

> θ̂

})
+ P

({
Z1 − Z2

S1 − S2

< θ̂

}{
Z3 − Z4

S3 − S4

< θ̂

})
= P (ZTn (R1R

T
2 + R2R

T
1 )Zn/2 > 0),

where Zn = (Z1, . . . , Zn) and (for n ≥ 5)

R1 =

( ∑
S2
j

S1 − S2

− S1,
−
∑
S2
j

S1 − S2

− S2,−S3, . . . ,−Sn
)
/
∑

S2
j

R2 =

(
−S1,−S2,

∑
S2
j

S3 − S4

− S3,
−
∑
S2
j

S3 − S4

− S4,−S5, . . . ,−Sn
)
/
∑

S2
j .
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The two nonzero eigenvalues of (R1R
T
2 + R2R

T
1 )/2 are λa ± λb where

λa = −1/(2
∑
j

S2
j )

λb =

√
((S1 − S2)2/

∑
j S

2
j − 2)((S3 − S4)2/

∑
j S

2
j − 2)

2(S1 − S2)(S3 − S4)
.

Then |λa| < |λb|, λa−|λb| < 0 < λa+|λb|, so one eigenvalue is negative and the other positive,

while |λb| − λa > |λb| + λa, so the negative eigenvalue is larger in magnitude. Let v1,v2

denote unit eigenvectors associated respectively to the positive and negative eigenvalues.

The condition for a positive bias takes the form

P

(
−λa
λb

>
ZTn (v⊗2

1 − v⊗2
2 )Zn

ZTn (v⊗2
1 + v⊗2

2 )Zn

)
> 1/2. (4)

The ratio −λa/λb is > 0 of order 1/n. A sufficient condition for a positive bias is then

P (ZTn (v⊗2
1 − v⊗2

2 )Zn < 0) ≥ 1/2 or

P (|ZTnv1| < |ZTnv2|) ≥ 1/2. (5)

The projections ZTnv1,Z
T
nv2 are uncorrelated with mean zero. When Z is gaussian, they are

IID conditionally on S, and (5) holds with equality. In general, however, whether (4) holds,

and therefore whether the bias is positive or negative, depends on the distributions of Z and

of S. Whether the bias is positive or negative, in turn, determines whether the Type II or

Type I error rate of Begg’s test is inflated. Fig. 2 presents the results of a small simulation

where the data exhibit negative bias.

2.4 Bias in the gaussian model

The study effects are often modeled as gaussian by appealing to the CLT, e.g., in the original

paper Begg and Mazumdar (1994). In this situation, the bias takes the form given by
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Theorem 2.

Theorem 2. Given pairs (Yj, σj), j = 1, . . . , n, such that

1. (Y1, . . . , Yn)|(σ1, . . . , σn) ∼ N(0, diag(σ2
1, . . . , σ

2
n)), and

2. for p = 1, 2, limn→∞ n
−1
∑n

i=1 σ
−p
i exists and is finite.

Then,

Var(
√
nτ̂)→ 4/9−

(
lim
(
n
2

)−2∑
i<j |1/σi − 1/σj|

)2

π limn−1
∑

1/σ2
i

.

Corollary 3. Given IID pairs (Yj, σj), j = 1, . . . , n, such that (Y1, . . . , Yn)|(σ1, . . . , σn) ∼

N(0, diag(σ2
1, . . . , σ

2
n)), S > 0 a.s., S has a continuous lebesgue density, E(S2) < ∞, and

P (S2 ≤ s) is O(sε) for some ε > 0, then Var(
√
nτ̂)→ 4/9− (E |S1−S2|)2

πE(S2)
.

For a general distribution for the response Z, in many typical cases, the limiting variance

is

4/9− 4(E |S1 − S2|)2

E(S2)
E(fZ(Z))(2 E(ZFZ(Z))− E(fZ(Z))). (6)

This result follows by exploiting the theory of U-processes (Nolan and Pollard 1988). The

proof given here for the gaussian case in Theorem 2 uses elementary methods. For gaussian

Z, E(fZ(Z)) = E(ZFZ(Z)) = 1/(2
√
π), which leads back to the special case given in the

corollary. Expression (6) also gives a criterion for the direction of the bias, i.e., the sign of

2 E(ZFZ(Z))− E(fZ(Z)).

Corollary 3 states that when the study effects are gaussian the bias depends on the ratio

r =
(E |S1 − S2|)2

E(S2)

of the squared mean absolute difference to the second moment of the distribution of study

precisions. The quantity is scale free, but depends on the location of S through the denomi-
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nator. It approaches 0 as the distribution of S degenerates to a nonzero constant. An upper

bound of 2/3 is given by the following.

Theorem 4. Assume S, S ′ are IID, positive and integrable random variables with CDF FS.

Then,

1. E |S − S ′| = 2
∫∞

0
FS(s)(1− FS(s))ds.

2. The functional F 7→
∫∞

0
F (s)(1 − F (s))ds is concave on the set of real functions for

which the integral is defined.

3. sup |S−S
′|√

ES2
=
√

2
3
, where the supremum is taken over nonnegative RVs.

For S uniformly distributed on [a, b], a ≥ 0, r = (b−a)2

3(a2+b2+ab)
, which is maximized at 1/3

when a = 0. For the general beta distribution with parameters a > 0, b > 0, the form

of r is given in Table 1. A continued fraction approximation suggests it is maximized at

(a, b) ≈ (.15, .39), an asymmetric, bimodal density, with value ≈ .66, nearing the bound of

2/3 given by the theorem.

For S exponentially distribution, r = 1/2. For a gamma distribution with shape param-

eter a, r = 16a
a+1

(B(1/2, a, a + 1) − 1/2)2, where B(1/2, k, k + 1) =
∫ 1/2

0
xk(1 − x)k+1dx is

an incomplete beta integral. Numerical evaluation suggests this expression is maximized at

k ≈ .54 with value ≈ .56.

When S has a pareto distribution with shape parameter a, i.e., fS(s) = aσa/sa+1{s > σ}

when the scale parameter is σ,

r =
4a(a− 2)

((2a− 1)(a− 1))2
,

defined for a > 2 and maximized over a at the unique root of −2a3 + 6a2− 2a− 1 on (2,∞),

a = 1 + 2
√

2/3 cos
(

1/3 arctan
(√

101/27
))
≈ 2.53,

where it takes the value ≈ .14.
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In practice, one may attempt to estimate r using the data. This approach may introduce

bias of its own, particularly when using common ratio estimators in conjunction with smaller

meta-analyses. The performance of an example of this approach is presented in Section 3.

3 Simulations

We consider the Types I and II error rates for the standard and debiased versions of Begg’s

test. To carry out the debiased version of Begg’s test, we used both the true asymptotic

bias, which depends on knowing the distribution of S, and an approximation based on the

data. For the latter, given a sample of study precisions s1, . . . , sn, r = (E |S1 − S2|)2/E(S2)

was estimated by

((
n

2

)−1∑
j<k

|sj − sk|

)2/
s2.

The scripts used to run the simulations and produce the figures in this section, as well as a

supporting R package, are available at https://github.com/haben-michael/begg-public.

1. FPR control

To examine the Type 1 error rate, data is generated under the null model (2.3). The

distributions of S considered were uniform, beta, exponential, gamma, and pareto, with

the parameters given in Section 2.4. Three meta-analysis sample sizes were considered,

25, 75, and 150. The sizes 25 and 75 were chosen to match the sizes used in Begg and

Mazumdar (1994). The size 150 was chosen to illustrate the conclusion of Theorem 2

that the bias in Begg’s test persists with large sample sizes. The test was conducted

at a nominal level of 5%. There were 1000 monte carlo repetitions.

The results are presented in Table 2. The unadjusted Begg test is conservative and

consistent with the discussion in Section 2.2 this bias does not go away with increased

sample size. The magnitude of the asymptotic bias follows the order one expects from
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Table 1: i.e., beta, gamma, uniform, pareto from most to least severe. For the small

meta-analyses the corrected test exceeds the nominal level by 1–3%, matching the

nominal level for the larger meta-analysis. There does not appear to be much loss in

approximating the correct variance using the data rather than using the true variance,

even for the smaller meta-analysis.

Next, we examine the Type 1 error rate under the normal random effects model, com-

monly used to model effect heterogeneity (DerSimonian and Laird 1986). Under this

model, the variances of the study effects, denoted σ2 in (1), are not the variances

reported by study authors. Instead, the reported variances represent only the within-

study variance, which is inflated by a between-study variance τ 2 common to the stud-

ies to obtain the marginal variances of the study effects, i.e., Yj ∼ N (µ, σ2 + τ 2), j =

1, . . . , n. Application of Theorem 2, which uses the marginal variance, therefore re-

quires estimation of the between-study variance, for which we use a standard method

of moments estimator (DerSimonian and Laird 1986).

Table 3 presents the observed Type 1 error rates of the unadjusted Begg test using the

true between-study variance, the adjusted Begg test also using the true between-study

variance, and adjusted Begg test using the estimated between-study variance. The

results are similar to those observed in Table 2. Also presented for each within-study

precision distribution is the average I2, a standard measure of effect heterogeneity.

2. Type II error rate

We examine the Type II error rate under an alternative considered by Begg and

Mazumdar (1994). Under this alternative, a study with p-value p is selected for publi-

cation with probability ∝ exp(−bp), with b ≥ 0. The parameter b controls the strength

of selection, with b = 0 corresponding to no selection. The choice of selection function

was informed by studies of selection bias contemporaneous with Begg and Mazumdar

(1994). The distributions of S considered for this simulation were uniform, beta, ex-
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ponential and gamma, and the sizes of the meta-analyses considered were 25, 75, and

150.

Power curves are presented in Fig. 3. For ease of interpretation, the alternatives are

parameterized by the proportion of studies selected, rather than b. The improvement

in power across distributions and sizes has a median value of 17%. The estimator based

on the approximation to the true asymptotic variance performs similarly to the oracle

estimator.

4 Data analysis

As an application, we describe three meta-analyses chosen to illustrate different conclusions

drawn by the standard and bias-corrected Begg’s test. In the typical situation that Begg’s

test reports a p-value far from the analyst’s chosen threshold, the bias-corrected test will

agree with the biased test. In the selected examples, the standard Begg’s test reports p-

values in the range 5− 10% and would be insignificant at the 5% level. The three examples

were chosen to contrast the stength of evidence for publication bias conveyed by a funnel

plot, the conventional informal test for publication bias. In the first, the authors see little

evidence for publication bias based on a funnel plot. In the second, the authors are unable

to determine the risk of publication bias. In the third, the authors caution that studies have

likely been omitted.

In a 2005 analysis, Van de Laar et al. (2005) assess the therapeutic effects of alpha-

glucosidase inhibitors in treating type 2 diabetes mellitus. As part of this analysis, they

examine the change in body weight under treatment. In a meta-analysis based on 13 ran-

domized trials of at least 12 weeks’ duration together involving 864 subjects, the authors find

little or no effect of the treatment on weight, contrary to expectations based on earlier work.

The authors assess the likelihood of publication bias as low based on a funnel plot (Fig. 4),

and Begg’s test gives a p-value of 7.4% . The bias-corrected test, however, rejects at the 5%
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level with a p-value of 2.7%. In this case the possibility of publication bias, suggested by

the bias-corrected test, is arguably of less concern as the subsequent meta-analysis can’t be

a false positive, failing to be significant anyway.

In a 2016 analysis, McNicol et al. (2016) assess the therapeutic effects of intravenously

administered paracetamol in treating postoperative pain. As part of their analysis, they

examine the reduction in opioids administered under treatment by paracetamol. In a meta-

analysis of 13 randomized trials together involving 777 subjects, the authors find a highly

significant reduction of 1.92 mg, with a 95% CI (−2.41,−1.42). The authors assess the

quality of the data as moderate, noting that the risk of selective reporting is unclear. In this

case, a standard Begg’s test gives a p-value 5.2%, just insignificant at the 5% level, whereas

the bias-corrected test returns a p-value 2.6%, suggesting publication bias is present and

casting doubt on the validity of the significant result of the subsequent meta-analysis. A

funnel plot (Fig. 4) likewise suggests the presence of publication bias.

In a 2020 analysis, Hooper et al. (2020) assess the effect of low-fat intake on body weight

in populations not seeking to lose weight. The authors conduct a meta-analysis on 26

randomized trials of at least six months’ duration involving 50, 907 subjects. They find that a

low-fat diet is associated with a −1.56 kg difference in weight, with a 95% CI (−1.88,−1.23),

and a p-value reported as < .00001. Though the trials in this analysis were chosen in part

for their low risk of bias, the authors warn of the possibility of selection bias based on a

funnel plot (Fig. 4) and other analyses. Begg’s test, however, gives a p-value 7.8%, whereas

the corrected test gives a p-value 3.3%, consistent with the authors’ suspicions.

5 Conclusion

We have examined the causes of a known bias in Begg’s test and quantified it in the common

model of normally distributed studies. We have also suggested a debiased estimator that

matches the nominal variance in the limit as the number of studies grows, unlike the standard

14



estimator, which remains conservative. Although simulations suggest the corrected estimator

is somewhat anticonservative on smaller meta-analyses, from the perspective of an analyst

concerned primarily about the integrity of the meta-analysis, exceeding the nominal level

may be preferable to falling under it, as discussed earlier.

Various avenues of further research suggest themselves. First, the direction of the bias of

Begg’s test outside of the gaussian model, characterized by (4) for symmetric distributions,

has not been fully explored here. It is possible that the direction is the same for certain

common large classes, e.g., symmetric unimodal distributions. Second, a glance at Fig. 3

shows that, even with the boost in power provided by the debiased estimator, the power

curves of Begg’s test are not very reassuring. There are competitors to Begg’s test, such

as Egger’s test and the more recent test of Lin and Chu (2018). However, quantitative

conditions have not been provided to assist an analyst in deciding which test to prefer in

given situations.
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Appendix

Proof of Lemma 1.

P

(
√
n

∣∣∣∣∣
(
n

2

)−1∑
j<k

{(
Yj − θ̂
σj

− Yk − θ̂
σk

)
(σj − σk) > 0

}

−
(
n

2

)−1∑
j<k


 Yj − θ̂√

σ2
j − σ2

θ̂

− Yk − θ̂√
σ2
k − σ2

θ̂

 (σj − σk) > 0


∣∣∣∣∣∣ > ε

∣∣∣∣∣∣σσσ


≤ P

√n(n
2

)−1∑
j<k


(
Yj − θ̂
σj

− Yk − θ̂
σk

) Yj − θ̂√
σ2
j − σ2

θ̂

− Yk − θ̂√
σ2
k − σ2

θ̂

 < 0

 > ε

∣∣∣∣∣∣σσσ


≤ ε−1
√
n

(
n

2

)∑
j<k

P

(Yj − θ̂
σj

− Yk − θ̂
σk

) Yj − θ̂√
σ2
j − σ2

θ̂

− Yk − θ̂√
σ2
k − σ2

θ̂

 < 0

∣∣∣∣∣∣σσσ


(1)

≤ ε−1
√
n

(
n

2

)∑
j<k

P

 |Zj − Zk| −
∣∣∣ θ−θ̂σj − θ−θ̂

σk

∣∣∣
|Zj|+ |Zk|+

∣∣∣ θ−θ̂σj ∣∣∣+
∣∣∣ θ−θ̂σk ∣∣∣ < 1−

(
1−

(
σθ̂
σj
∧
σθ̂
σk

)2
)−1/2

∣∣∣∣∣∣σσσ


≤ ε−1
√
n

(
n

2

)−1∑
j<k

P
 |Zj − Zk| − 2

na

|Zj|+ |Zk|+ 2
na

< 1−

(
1−

(
σθ̂
σj
∧
σθ̂
σk

)2
)−1/2

∣∣∣∣∣∣σσσ


+P

(∣∣∣∣∣θ − θ̂σj

∣∣∣∣∣ ∨
∣∣∣∣∣θ − θ̂σk

∣∣∣∣∣ > 1

na

∣∣∣∣∣σσσ
))

(2)

≤ ε−1
√
n

(
n

2

)−1∑
j<k

P

 |Zj − Zk| − 2
na

|Zj + Zk|+ 2
na

< 1−

(
1−

(
σθ̂
σj
∧
σθ̂
σk

)2
)−1/2

∣∣∣∣∣∣σσσ
+ o(1)

(3)
= ε−1

√
n

(
n

2

)−1∑
j<k

O

1−

(
1−

(
σθ̂
σj
∧
σθ̂
σk

)2
)−1/2

+ o(1)

(4)
= o(1).

The referenced steps are given below.
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1. Writing 4 for the symmetric difference,

{(
Yj − θ̂
σj

− Yk − θ̂
σk

)
(σj − σk) > 0

}
4


 Yj − θ̂√

σ2
j − σ2

θ̂

− Yk − θ̂√
σ2
k − σ2

θ̂

 (σj − σk) > 0


=


 Yj − θ̂

σj
√

1− σ2
θ̂
/σ2

j

− Yk − θ̂

σk
√

1− σ2
θ̂
/σ2

k

(Yj − θ̂
σj

− Yk − θ̂
σk

)
> 0


=


(
Yj − θ̂
σj

− Yk − θ̂
σk

)2

<

(
Yj − θ̂
σj

− Yk − θ̂
σk

)Yj − θ̂
σj

1− 1√
1− σ2

θ̂
/σ2

j


−Yk − θ̂

σk

1− 1√
1− σ2

θ̂
/σ2

k


≤


(
Yj − θ̂
σj

− Yk − θ̂
σk

)2

<

∣∣∣∣∣Yj − θ̂σj
− Yk − θ̂

σk

∣∣∣∣∣
∣∣∣∣∣Yj − θ̂σj

∣∣∣∣∣
1− 1√

1− σ2
θ̂
/σ2

j


+

∣∣∣∣∣Yk − θ̂σk

∣∣∣∣∣
1− 1√

1− σ2
θ̂
/σ2

k


≤


(
Yj − θ̂
σj

− Yk − θ̂
σk

)2

<

∣∣∣∣∣Yj − θ̂σj
− Yk − θ̂

σk

∣∣∣∣∣
(∣∣∣∣∣Yj − θ̂σj

∣∣∣∣∣+

∣∣∣∣∣Yk − θ̂σk

∣∣∣∣∣
)1−

(
1−

(
σ2
θ̂

σ2
j

∧
σ2
θ̂

σ2
k

))−1/2


=


∣∣∣Zj − Zk + θ−θ̂

σj
− θ−θ̂

σk

∣∣∣(∣∣∣Zj + θ−θ̂
σj

∣∣∣+
∣∣∣Zk + θ−θ̂

σk

∣∣∣) <
1−

(
1−

(
σ2
θ̂

σ2
j

∧
σ2
θ̂

σ2
k

))−1/2


≤

 |Zj − Zk| −
∣∣∣ θ−θ̂σj − θ−θ̂

σk

∣∣∣
|Zj|+ |Zk|+

∣∣∣ θ−θ̂σj ∣∣∣+
∣∣∣ θ−θ̂σk ∣∣∣ <

1−

(
1−

(
σ2
θ̂

σ2
j

∧
σ2
θ̂

σ2
k

))−1/2
 .
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2.

P

(∣∣∣∣∣θ − θ̂σj

∣∣∣∣∣ ∨
∣∣∣∣∣θ − θ̂σk

∣∣∣∣∣ > 1

na

∣∣∣∣∣σσσ
)

= P

(
|θ − θ̂| > 1

na
σj ∧ σk

∣∣∣∣σσσ)
≤ n2a Var(θ̂|σσσ)

σ2
j ∧ σ2

k

=
n2a

σ2
j ∧ σ2

k

1∑
l

1
σ2
l

.

Substituting this bound into the double sum,

√
n

(
n

2

)−1∑
j<k

P

(∣∣∣∣∣θ − θ̂σj

∣∣∣∣∣ ∨
∣∣∣∣∣θ − θ̂σk

∣∣∣∣∣ > 1

na

∣∣∣∣∣σσσ
)
≤ n2a−1/2 n∑

l
1
σ2
l

(
n

2

)−1∑
j<k

1

σ2
j ∧ σ2

k

.

The expression on the right → 0 as n → ∞ provided a < 1/4, n∑
l

1

σ2
l

= O(1), and(
n
2

)−1∑
j<k

1
σ2
j∧σ2

k
= O(1). The condition on n∑

l
1

σ2
l

is given. Using the order statistic no-

tation 0 < S(1) < S(2) < . . . < S(n),

(
n

2

)−1∑
j<k

1

σ2
j ∧ σ2

k

=

(
n

2

)−1 n∑
j=1

(j − 1)S2
(j) ≤

2

n

n∑
j=1

S2
(j) =

2

n

n∑
j=1

S2
j ,

and the last expression is assumed bounded.

3. The step follows on showing that the densities of
|Zj−Zk|− 2

na

|Zj+Zk|+ 2
na
, n ∈ N, are bounded uniformly

near 0, which follows on showing

(a) the density of
|Zj−Zk|
|Zj |+|Zk|

is bounded in a neighborhood of 0, and

(b) The density of
|Zj−Zk|− 2

na

|Zj+Zk|+ 2
na

converges to the density of
|Zj−Zk|
|Zj |+|Zk|

uniformly in a neighbor-

hood of 0.

(a) Let

U = |Zj − Zk|, V = |Zj|+ |Zk|.
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The density of the ratio U/V at r is given by

∫ ∞
0

fV (v)fU(rv)vdv

which evaluates to fU(0) EV at r = 0. The ratio density is therefore bounded at 0 iff the

density of U = |Z − Z ′| is iff
∫
fZ(z)2 <∞.

(b) The density of the ratio (U − 2
na

)/(V + 2
na

) at r is

fU− 2
na

V+ 2
na

=

∫ ∞
0

vfV+ 2
na

(v)fU− 2
na

(rv)dv =

∫ ∞
0

vfV (v − 2/na)fU(rv + 2/na)dv

=

∫ ∞
2/na

vfV (v − 2/na)fU(rv + 2/na)dv

=
2

na

∫ ∞
0

fV (v)fU)rv + 2/na(r + 1))dv +

∫ ∞
0

vfv(v)fU(rv +
2

na
(r + 1))dv.

As fZ−Z′(z) = (fZ ? f−Z′)(z), the assumption that
∫
fZ(z)2 < ∞, i.e., fZ ∈ L2, implies

via Plancharel that fZ−Z′ is uniformly continuous and therefore fU = f|Z−Z′| is uniformly

continuous, as well. Therefore, given ε > 0,

∫ ∞
0

vfV (v)

∣∣∣∣fU (rv +
2

na
(r + 1)

)
− fU(rv)

∣∣∣∣ dv ≤ ε

∫ ∞
0

vfV (v)dv

for n large enough, uniformly for all r in a neighborhood of 0.

4. As σ2
θ̂
/σ2

j = 1/(1 +
∑

l 6=j 1/σ2
l ) < 1,

(
n

2

)−1∑
j<k

√
n

1−

(
1−

(
σθ̂
σj
∧
σθ̂
σk

)2
)−1/2


=

(
n

2

)−1∑
j<k

(
−1

2

√
n

(
σθ̂
σj
∧
σθ̂
σk

)2

+ o

(
√
n

(
σθ̂
σj
∧
σθ̂
σk

)2
))

= −1

2

√
n∑
l

1
σ2
l

(
n

2

)∑
j<k

1

σ2
j ∨ σ2

k

+ o

(
√
n

(
σθ̂
σj
∧
σθ̂
σk

)2
)
.
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The last expression→ 0 as n→∞ when n∑
l

1

σ2
l

= O(1), and
(
n
2

)−1∑
j<k

1
σ2
j∨σ2

k
= O(1), where

as in step (2) the latter condition is implied by n−1
∑n

j=1
1
σ2
j

= O(1).

Proof of Theorem 2.

Var(
√
nτ̂ | σσσ)

= 4n

(
n

2

)−2∑
i<j
k<l

Cov

({(
Yi − θ̂
σi

− Yj − θ̂
σj

)
(σi − σj) > 0

}
,

{(
Yk − θ̂
σk

− Yl − θ̂
σl

)
(σk − σl) > 0

}∣∣∣∣∣σσσ
)
.

As noted earlier, this sum consists of

1. 6
(
n
3

)
terms with 3 distinct indices, and

2.
(
n
2

)(
n−2

2

)
terms with 4 distinct indices,

The first are normalized by the n
(
n
2

)−2
appearing before the sum, while the second is not.

The remaining terms in the sum are asymptotically negligible.

Step 1a below shows that the estimated parameter θ̂, which induces the bias in the sum

consisting of terms with 4 distinct indices, is negligible in the sum consisting of terms with

3 distinct indices:

4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

Cov

({(
Yi − θ̂
σi

− Yj − θ̂
σj

)
(σi − σj) > 0

}
,

{(
Yk − θ̂
σk

− Yl − θ̂
σl

)
(σk − σl) > 0

}∣∣∣∣∣σσσ
)

= 4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

Cov ({(Zi − Zj) (σi − σj) > 0} , {(Zk − Zl) (σk − σl) > 0}|σσσ) + o(1).
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Then by step 1b,

4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

Cov ({(Zi − Zj) (σi − σj) > 0} , {(Zk − Zl) (σk − σl) > 0}|σσσ)→ 4

9
,

the usual null variance for Kendall’s tau. Step 2 then gives the bias due to the terms with

4 distinct indices:

4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=4

Cov

({(
Yi − θ̂
σi

− Yj − θ̂
σj

)
(σi − σj) > 0

}
,

{(
Yk − θ̂
σk

− Yl − θ̂
σl

)
(σk − σl) > 0

}∣∣∣∣∣σσσ
)

(7)

=

(
lim
(
n
2

)−2∑
i<j |1/σi − 1/σj|

)2

π limn−1
∑

1/σ2
i

+ o(1).
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1. (a)

4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

∣∣∣∣∣P
({(

Yi − θ̂
σi

− Yj − θ̂
σj

)
(σi − σj) > 0

}
∧

{(
Yk − θ̂
σk

− Yl − θ̂
σl

)
(σk − σl) > 0

}∣∣∣∣∣σσσ
)

− P ({(Zi − Zj) (σi − σj) > 0} ∧ {(Zk − Zl) (σk − σl) > 0}|σσσ)

∣∣∣∣∣
= 4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

∣∣∣∣∣P
(
Zi − Zj
σi − σj

>
θ − θ̂
σiσj

∧ Zk − Zl
σk − σl

>
θ − θ̂
σkσl

∣∣∣∣∣σσσ
)∣∣∣∣∣− P

(
Zi − Zj
σi − σj

∧ Zk − Zl
σk − σl

> 0

∣∣∣∣σσσ)

≤ 4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

∣∣∣P ( |Zi − Zj| ≤ |(Si − Sj)(θ − θ̂)| ∪ |Zk − Zl| ≤ |(Sk − Sl)(θ − θ̂)|∣∣∣σσσ)∣∣∣

≤ 8n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

∣∣∣P ( |Zi − Zj| ≤ |(Si − Sj)(θ − θ̂)|∣∣∣σσσ)∣∣∣
≤ 8n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

F|Zi−Zj |(|Si − Sj|na) + 32
n− 2

n− 1
P (|θ − θ̂| > na). (8)

The variable a in (8) may be any number in (−1/2, 0). As Zi − Zj ∼ N (0, 2), the CDF

F|Zi−Zj |(x) = O(x) near 0, so that the (8) is

. 8n

(
n

2

)−2

na
∑
i<j
k<l

|{i,j,k,l}|=3

|Si − Sj| ∧ 1 + o(1)

≤ 16n(n− 2)

(
n

2

)−2

na
∑
i<j

|Si − Sj| ∧ 1 + o(1)., (9)

The normalized double sum
(
n
2

)−2
na
∑

i<j |Si−Sj| is shown to be O(1) in step 2, so that the
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expression (9) is = naO(1) = o(1).

(b) With i < j, k < l, |{i, j, k, l}| = 3, {(Zi−Zj)(σi−σj) > 0}∧{(Zk−Zl)(σk−σl) > 0} has

the form {(Zi′−Zj′)(σi′−σj′) > 0}∧{(Zi′−Zk′)(σi′−σk′) > 0}, since {(Zj−Zi)(σj−σi) >

0} = {(Zi − Zj)(σi − σj) > 0}, etc. Evaluating

P ((Zi − Zj)(σi − σj) > 0 ∧ (Zi − Zk)(σi − σk) > 0|σσσ)

by cases, each occurring 1/3 of the time:

i. σi > σk ∨ σl: P (Zi > Zj ∧ Zi > Zk|σσσ) = E(FZ(Z)2) = 1/3

ii. σi < σj ∧ σk: P (Zi < Zj ∧ Zi < Zk|σσσ) = E(1− FZ(Z))2 = 1/3

iii. σj < σi < σk or σk < σi < σj: E(FZ(Z)(1− FZ(Z))) = 1/6

Therefore,

4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

Cov ({(Zi − Zj) (σi − σj) > 0} , {(Zk − Zl) (σk − σl) > 0}|σσσ)

= 4n

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=3

(P ({(Zi − Zj) (σi − σj) > 0} ∧ {(Zk − Zl) (σk − σl) > 0})− 1/4)

= 4n

(
n

2

)−2

2(n− 2)

(
n

2

)(
2

3

(
1

3
− 1

4

)
+

1

3

(
1

6
− 1

4

))
=

4

9

n− 2

n− 1
.
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2. A term in the sum (7) has the form

Cov

({(
Yi − θ̂
σi

− Yj − θ̂
σj

)
(σi − σj) > 0

}
,

{(
Yk − θ̂
σk

− Yl − θ̂
σl

)
(σk − σl) > 0

}∣∣∣∣∣σσσ
)

= Cov

({(
Yi − θ̂
σi

− Yj − θ̂
σj

)
(Si − Sj) < 0

}
,

{(
Yk − θ̂
σk

− Yl − θ̂
σl

)
(Sk − Sl) < 0

}∣∣∣∣∣σσσ
)

= Cov

({
Zi − Zj
Si − Sj

≥ θ̂

}
,

{
Zk − Zl
Sk − Sl

≥ θ̂

}∣∣∣∣σσσ)
= P

(
Zi − Zj
Si − Sj

∧ Zk − Zl
Sk − Sl

> θ̂

∣∣∣∣σσσ)− 1

4
. (10)

To simplify the notation, suppose i, j, k, l are 1, 2, 3, 4. Then the probability in (12) is

P

(∑n
j=5 ZjSj∑

j S
2
j

<

(
Z1 − Z2

S1 − S2

−
∑4

j=1 ZjSj∑
j S

2
j

)
∧

(
Z3 − Z4

S3 − S4

−
∑4

j=1 ZjSj∑
j S

2
j

)∣∣∣∣S
)

= E

Φ

 ∑
j S

2
j√∑n

j=5 S
2
j

(
Z1 − Z2

S1 − S2

−
∑4

j=1 ZjSj∑
j S

2
j

)
∧

(
Z3 − Z4

S3 − S4

−
∑4

j=1 ZjSj∑
j S

2
j

)∣∣∣∣S


= E (Φ(W0 ∧W1) | S) , (11)

where W0,W1 are jointly normal conditionally on S = (S1, . . . , Sn) with mean 0, variances

V0 =
2

(S1 − S2)2
+

2∑
j S

2
j

+

∑4
1 S

2

(
∑

j S
2
j )

2
, V1 =

2

(S3 − S4)2
+

2∑
j S

2
j

+

∑4
1 S

2

(
∑

j S
2
j )

2
,

and covariance

ρ
√
V0V1 = − 2∑

j S
2
j

+

∑4
1 S

2

(
∑

j S
2
j )

2
.

The density fW0∧W1 of the minimum of a bivariate normal pair is readily available and
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substitution into (11) gives

E (Φ(W0 ∧W1) | S) =

∫ ∞
−∞

Φ(u)fW0∧W1(u)du

=
∑

j∈{0,1}

1√
Vj

∫ ∞
−∞

Φ(u)Φ

(
u√

1− ρ2

(
ρ√
Vj
− 1√

V1−j

))
φ

(
u√
Vj

)
du.

Let ∆0 = S1−S2 and ∆1 = S3−S4. The definite integral may be computed by differentiating

under the integral sign, giving

1

2
+

1

2π

∑
j

arctan

− 1

∆2
j

(
1

∆2
0∆2

1

−
(

1

∆2
0

+
1

∆2
1

)
1

2
∑

j S
2
j

)−1/2
 .

Let u = 1/
∑n

j=5 S
2
j , so by the assumption on n−1

∑n Sj, u → 0. When u = 0, the last

expression is 1/2 + (2π)−1
∑

j arctan
(
−|∆1−j

∆j
|
)

= 1/4. Expanding about u = 0 and simpli-

fying,

E (Φ(W0 ∧W1) | S) =
1

4
+

u

2π

∑
j

d

du
arctan

(
− 1

∆2
j

(
1

∆2
0∆2

1

−
(

1

∆2
0

+
1

∆2
1

)
u

2

)−1/2
)∣∣∣∣

u=0

+ o(u)

=
1

4
− u

4π
|∆0∆1|+ o(u).

The double sum (7) is therefore

−1

π

n∑
i S

2
i

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=4

|Si − Sj||Sk − Sl|+ n · o

(∑
i

S2
i

)−1
 . (12)
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Rewriting the sum,

(
n

2

)−2 ∑
i<j
k<l

|{i,j,k,l}|=4

|Si − Sj||Sk − Sl| =
(
n

2

)−2∑
i<j

|Si − Sj|
∑
k<l

|{i,j,k,l}|=4

|Sk − Sl|

=

((
n

2

)−1∑
i<j

|Si − Sj|

)2

+ o

((
n

2

)−2
(∑

i<j

|Si − Sj|

))
.

The sum
(
n
2

)−1∑
i<j |Si − Sj| ≤ 2n−1

∑
i Si. Since this last sum is assumed to converge and

all terms are positive,
(
n
2

)−1∑
i<j |Si − Sj| also converges to a finite limit.

Proof of Corollary 3. The marginal variance is Var(
√
nτ̂) = E Var(

√
nτ̂ | σσσ) + Var E(

√
nτ̂ |

σσσ). The second term is 0 since E(
√
nτ̂ | σσσ) = 0 is constant. For the first term, substituting

the expression at (12) in the proof of Theorem 2,

E Var(
√
nτ̂ | σσσ) = E

−1

π

n∑
i S

2
i

((
n

2

)−1∑
i<j

|Si − Sj|

)2

+
n∑
i S

2
i

· o

((
n

2

)−2
(∑

i<j

|Si − Sj|

))
+ n · o

(∑
i

S2
i

)−1
 .

To push the limit inside the expectation it is enough to show that
(
n
2

)−2∑
i<j |Si − Sj| and

n∑
i S

2
i

are uniformly integrable. The first is bounded by the UI sample averages 2n−1
∑

i Si.

The second is UI by the following proposition:

Lemma 5. If X1, X2, . . . are nonnegative and IID, then the sequence of reciprocals of the

sample means n/(
∑n

j=1 Xj), n = n0, n0 + 1, . . . , is uniformly integrable for some n0 if and

only if the common CDF of the Xj is O(xε) for some ε > 0.

Proof. First, n/(
∑n

j=1 Xj) has moments> 1, say 1+ε, for n large enough. As P ( 1
n

∑n
j=1Xj <
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x) ≤ P (X1 < nx)n,

E

( n∑n
j=1Xj

)1+ε
 = (1 + ε)

∫ ∞
0

xεP

(
n∑n

j=1 Xj

> x

)
dx

≤ (1 + ε)

(
1 +

∫ ∞
1

xεP

(
n∑
j=1

Xj <
n

x

)
dx

)

. (1 + ε)

(
1 +

∫ ∞
1

xε
(n
x

)nε
dx

)
,

which is finite for n > 1/ε− 1. Next, for such n, the sample means 1
n

∑n
j=1Xj, n = 1, 2, . . . ,

are a reverse martingale with respect to Fn = σ{
∑n

j=1Xj,
∑n+1

j=1 Xj, . . .}. The conditional

form of Jensen’s inequality applied to the convex function x 7→ x−(1+ε) on R+ gives, for

k ∈ N,

E

( n+ k∑n+k
j=1 Xj

)1+ε
 = E

(E

(
1

n

n∑
j=1

Xj

∣∣∣∣Fn+k

))−(1+ε)


≤ E

( 1

n

n∑
j=1

Xj

)−(1+ε)
 = E

( n∑n
j=1 Xj

)1+ε
 .

The reciprocals of the sample means are therefore Lp–bounded with p = 1 + ε for all large

n, implying that they are uniformly integrable.

Conversely, if P (X < x) isn’t O(xε) for any ε, there are sequences εn → 0, xn → 0, xn < 1,

such that P (X < xn) > xεnn . Then as P ( 1
m

∑m
j=1Xj < xn) > P (X < xn)m > xmεnn ,

E

(
m∑
Xj

)
=

∫ ∞
0

P

(
m∑
Xj

> x

)
dx

≥
∫ ∞

1

P

(
1

m

∑
j

X < 1/x

)
dx

≥
∞∑
j=1

x
mεj
j (1/xj+1 − 1/xj)

≥
∞∑
j=j0

(xj/xj+1 − 1),
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with j0 chosen so that mεj < 1 when j ≥ j0. The condition xn → 0 then implies

∞∑
j=j0

(xj/xj+1 − 1) ≥
∞∑
j=j0

log(xj/xj+1)

= log

(
∞∏
j=j0

xj/xj+1

)
=∞,

so the reciprocals of the sample means aren’t integrable.

Proof of Theorem 4. 1. First,

E |S − S ′| = E((S − S ′){S − S ′ < 0})− E((S − S ′){S − S ′ < 0})

= E((S − S ′){S − S ′ < 0}) + E((S − S ′){S − S ′ > 0})

= 2 (E(S{S − S ′ > 0})− E(S ′{S − S ′ > 0}))

= 2 (E(SFS(S))− E(S(1− FS(S))))

= 2 (2 E(SFS(S))− ES) .

Second,

E(SFS(S)) =

∫ ∞
0

sFS(s)fS(s)ds

=

∫ ∞
0

s(F − S(s)− 1)fS(s)ds+

∫ ∞
0

sfS(s)ds

=
1

2
s(FS(s)− 1)2

∣∣∣∣∞
0

− 1

2

∫ ∞
0

(1− FS(s))2ds+

∫ ∞
0

(1− FS(s))ds

=
1

2

∫ ∞
0

(1− FS(s)2)ds.
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Therefore,

E |S − S ′| = 4 E(SFS(S))− 2 ES

= 2

(∫ ∞
0

(1− FS(s)2)ds−
∫ ∞

0

(1− FS(s))ds

)
= 2

∫ ∞
0

FS(s)(1− FS(s))ds.

2. For λ ∈ [0, 1],

(λF + (1− λ)G)(1− λF − (1− λ)G)− λF (1− F )− (1− λ)G(1−G)

= λ(1− λ)F 2 + λ(1− λ)G2 − 2λ(1− λ)FG

= λ(1− λ)(F −G)2 ≥ 0,

and the asserted property follows by taking integrals at both ends.

3. Maximizing E |S−S′|√
ES2

is the same as maximizing E |S − S ′| subject to ES2 = 1. From

the previous part, this problem is the same as

maximize

∫ ∞
0

F (s)(1− F (s))ds

subject to: 2

∫ ∞
0

s(1− F (s))ds = 1

F = 0 on {s < 0}

lim
s→∞

F (s) = 1

F monotone

The variational calculus gives a stationary point. The Lagrangian is F (1−F )−2λs(1−

F ) and Euler-Lagrange equation is F = 1
2
(1 + 2λs). The constraints imply

F (s) =
1

2

(
1 +

s√
6

)
{0 ≤ s ≤

√
6},
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for which the objective evaluates to
√

2
3
. This CDF has positive mass at 0 but the

objective may be approximated by a continuous CDF. For δ > 0, let

Fδ(s) =


2
2δ
, 0 ≤ s ≤ δ

1
2

+ s−δ
2(
√

6−δ) , δ < s ≤
√

6.

Then E |S − S ′| =
√

2
3

as with F , and
√

ES2 =
(

1 + δ√
6

+ δ2

3

)1/2

→ 1 as δ → 0.

Therefore, for S ∼ Fδ, a continuous, strictly positive RV, E |S−S′|√
ES2

approximates the

upper bound
√

2
3
.
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Figure 1: The effect of a simple hard thresholding selection model on the study means.
Overlaid on the joint density of Y and σ, indicated by grayscale, is the mean θ = 0 of
Y |σ before selection and exhibiting no trend (solid line), a threshold line corresponding to
rejecting studies with a one-sided p-value > .3 (dashed line), and the mean of the studies
after selection, exhibiting a trend that Begg’s test can pick up (dotted line).
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Figure 2: The observed Type I error rate of Begg’s test compared to a nominal rate of .1
when the distribution of the response Z is based on a standardized Student’s t distribution,
i.e., Z = T/

√
df/(df − 2) where T follows a Student’s t with df degrees of freedom. The

error rate slightly exceeds the nominal rate, particularly as df decreases to the boundary
case at 2. In contrast, when Z is gaussian, the error rate falls below the nominal rate.
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Figure 3: Power curves of standard Begg’s test, after debiasing using true asymptotic bias,
and after debiasing using estimated asymptotic bias. The alternatives are parameterized by
the proportion of studies selected. The estimator debiased using an estimate of the true bias
and the true bias itself overlap.
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Figure 4: Funnel plots of the three meta-analyses described in Section 4. These were inter-
preted as suggesting lower, moderate, and higher possibilities of publication bias, going from
left to right.
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distribution of S r max asymptotic bias

uniform (b−a)2

3(a2+b2+ab)
.11

beta
(

4B(a+b,a+b)
B(a,a)B(b+b)

)2
a+b+1

a(a2+ab+a+b)
.21

gamma 16a
a+1

(B(1/2, a, a+ 1)− 1/2)2 .18

pareto 4a(a−2)
((2a−1)(a−1))2

.04

Table 1: Shape families of some nonnegative RVs, r = bias × π = (E |S1 − S2|)2/E(S2) in
terms of the shape parameters, and the maximum bias of the asymptotic variance over the
shape family. The maximum variance was obtained numerically for the beta and gamma
distributions.

meta-analysis size
precision distribution 25 75 150

uniform 0.04, 0.07, 0.07 0.03, 0.05, 0.05 0.03, 0.05, 0.05
exponential 0.03, 0.08, 0.08 0.02, 0.06, 0.06 0.02, 0.05, 0.05

gamma 0.02, 0.07, 0.07 0.02, 0.06, 0.06 0.01, 0.05, 0.05
beta 0.01, 0.08, 0.07 0.01, 0.06, 0.05 0.01, 0.05, 0.05

pareto 0.05, 0.06, 0.06 0.04, 0.06, 0.06 0.04, 0.05, 0.05

Table 2: False positive rates for the standard Begg’s test, after debiasing using the true
asymptotic bias, and after debiasing using an estimate of the asymptotic bias.

meta-analysis size
precision distribution 25 75 150

uniform (I2 = 0.54) 0.05, 0.07, 0.07 0.03, 0.05, 0.05 0.03, 0.05, 0.05
exponential (I2 = 0.85) 0.05, 0.07, 0.07 0.04, 0.06, 0.06 0.04, 0.05, 0.05

gamma (I2 = 0.67) 0.03, 0.06, 0.06 0.02, 0.06, 0.06 0.02, 0.05, 0.05
beta (I2 = 0.39) 0.01, 0.07, 0.07 0.01, 0.05, 0.05 0.01, 0.06, 0.06

pareto (I2 = 0.92) 0.06, 0.06, 0.06 0.06, 0.06, 0.06 0.06, 0.06, 0.06

Table 3: False positive rates under effect heterogeneity for the standard Begg’s test using the
true (unobserved) between-study variance, after debiasing using an estimate of the asymp-
totic bias while still using the true (unobserved) between-study variance, and after debiasing
using an estimate of the asymptotic bias and an estimate of the between-study variance.
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