Proof of Theorem 2. 1. Let X,, denote the n x 2 design matrix for the Egger regression,
i.e., a column of 1’s and a column of the regressors S;. Let Z denote the column vector
of responses Z; = Y;/o;. The coefficient f3, the first component of (XTX,)'XTZ, is
Bo = (Var(S)) n? >0 1(5? = 5S;)Z;, where Var(5) = nt >;(S; = 8). The variance
estimate is Var(fy) = %, where SSE = |(I — X(XTX)"XT)Z|2. The Egger test
statistic may therefore be written in terms of Z and S as

ik (P -S5)27
VVar(B)  /SVar(3)SSE/(n - 2)

(1)

The numerator in (1) may be replaced by an asymptotically equivalent 11D normalized
average,

n

Vi (5 - 58,7, - Va3 (B(S) - B($)$)7; - 0

pn)

By the CLT, \/n (E(SQ) - ?) is Op, (1). By a weak LLN for trianular arrays Z — pw) 0.

Therefore \/n <E (5?) — ?) 7 — 0 in probability along P™. Similarly, the CLT implies

Vi (E(S) = 8) is Op,(1). Orthogonality of Z and S and uniform integrability of Z under
P™ implies SZ —p, Eo(SZ) = 0. Therefore SZ (E(S) — S) — 0 along P™.

For the denominator, SSE/(n—2) = ZT(I— X(X'X) "' X*)Z /n — Var(Z) in probability
along P™. The form

X (XTX)'XTZ = (Var(§)) ™! (7(? 7-852)+75(Z5 -7 ?))

=,

75
= (Var(8)) " (5%(2)* + (Z5) - 95 7 57).

converges in probability to 0 along P, with each monomial converging to E(S?)E(Z?).
Therefore SSE/(n —2) = n*ZTZ + 0pwm (1), which tends along P™ to E(Z?%) = Var(Z),
as above.

2. By part 1, the standardized test statistic is asymptotically equivalent to an IID average,
and asymptotic normality follows from the Lindeberg-Feller CLT. The conditions of that
theorem follow from the assumptions here on S and Z, which in fact imply that the random
variables {Var(S)™'(E(S?) — E(S)S1)Z; — E,(Z)}, as the distribution P, varies, are L*-
bounded.



The local limiting power at the null § = 0 is then

3 Var(S) " 1(E(S?) — E(S)S;)Z;
hmp(n)( b, :hmp(n)( g Var(S) L(B($) = B(9)S)) J>tnw>
" (o) '

\/Var(Z)E(S?)/ Var(S)

Var
i P ( 1y D (Var()NE(S?) — ES)S)Z; =) flm >
\/Var(Z)E(S?)/ Var(9S) ’ \/Var(Z)E(S?)/ Var(9)
h
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O
Proof of Theorem 3. Decomposing the left hand side of (3) as
Vit (#0) - (£07) (10 ) = v (#46) - @5)0) ®
+V/n((MM#)(0) - (E™7)(0)) (3)
Vi (EaE) - 07 (Lem))
the proof is divided in 3 steps:
L v (7(8) = (7)(8)) = 00 (1)
2. /n((TIMF)(0) = (E™7)(6)) = v/n(T1™7)(0) + 0pw (1)
3. Vi ((E®7)(0) - (BW#) (1o®)) = i (2 — 1m0 - 2818, - | B [ (2) +
opem (1)
1. Let

g™ (0) = v/n (7(0) — TI™#(0)) ,

~

so the right-hand side of (2) is g™ (). So it is enough to show that sup,|¢™(0)| =
OP(n)(n_l/Q).

(6) ~ TLM7(0))

7’;
- g% — pm 22 0| Z;. S,
i) = ({5 <o) - (2 <o]ns)
1<j<k<n
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For any fixed # and n, the last expression is 24/n times a U-statistic with bivariate kernel

z, s)

_ /
2, s’) + P g pt) (z < 9) . (5)

/

((z,5), (,8)) = {Z_Z, <e} — p® (Z_Z <0
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o
_p<n>(z S
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Let F( denote the class of functions (5) as # € R varies. The kernels in this class give rise
to degenerate U-statistics with respect to P, i.e., for any f € F™ and (z, s),

P F((Z,5),(Z,8) | (Z,5) = (z.5) = 0.

Nolan and Pollard (1987, 1988) provides a bound for the supremum of [¢™ ()| over
a class of degenerate bivariate kernels such as F™. Given an IID sample 1, ..., Zo,, let
T, denote the random measure that places mass 1 on all pairs of observations of the form
(w2, Tak), (T2j—1, Tak—1), (T2j-1, Ta), OF (T2j, Top—1), where j # k,1 < j, k < n. Given a class
of real function F, measure p, and u > 0, let N(u, u, F) denote the L?(u) covering number
of F, and let J(u, F) = fol log N (u, p, F)du denote the associated covering integral. Let F
denote a bound for the functions in F. By Theorem 6 of Nolan and Pollard (1987), there
is a constant ¢ such that

. e (1 T.f2  [T,F? .
P”%“p'g()'fﬁp()<zsup\/7+\/ o (T )))-

Fn) Fn)

With two applications of the Cauchy-Schwarz inequality,

T, F? ~
P sup g™ < %\/w o (1+ \/P(”)J(Tn,]-"(”))2).
Fn)

Taking the bound F = 4 for f € F™, \/P("W;—Ez < 64. Since F ¢ F +2P™WF 4+ p") g
P™ F, Lemma 16 of Nolan and Pollard (1987), implies

N(u,T,, F™) < N(u/4,T,, F) - N(u/16,T,, P™ F) - N(u/64,T,, P™ F) - N(u/64,T,, P™ @ P™ F).

The functions in each of the classes F, P™F, and P™ ® P™ F are monotonic in 6, so
each has a linear discriminating polynomial, p(z) = x + 1. By the Approximation Lemma,
I1.25 of Pollard (1984), there exist constants A, W, depending only on the discriminating
polynomial, such that

Therefore,

~ ! T 1 : N
J(T,, F™) = / log N (u, Ty, F™)du < / log (2,43 (%) )du
0 0

is bounded uniformly in n.



2. Let P ) denote the empirical measure on a sample of size n under P™. For § € R, let

hé ") denote the function (z,5) — 4P (£=Z g// <0|Z==22S8=5s). Then

n

Vi (T3)(8) — (B™7)(9)) = v/ (%]lem) (? _Z 9‘ Zj,sj> _4p™ g pm (g - Z:

= /n (P — P (n{™).
For fixed n, letting 6 vary, v/n ((II™7)(0) — (E™7)(6)) is therefore an empirical process
indexed by the class of functions
POF = {nf":0cR}.
Letting n vary gives a sequence of processes, in terms of which (3) is
Vi (P = P") (" = ki) = opo (1),
which follows on showing

(a) v/n (P,En) — p™ ) is stochastically equicontinuous along P™, that is, for any n > 0,¢ >
0, there is 0 > 0 such that

lim sup P (sup IVn (P(” P(”)) (hén) - hé7))| > 77) <e

n—o0 [5}

where [5]™ = {(8,0') € PWFM . POI(R{Y — hiY)? < 62},

(b) For any € > 0, there is & > 0 such that |§] < & implies limsup P™ (h{" — hJV)? < ¢,
and

(¢) 6 is consistent for 0 along P™, i.c., for any 6 > 0,¢ > 0, limsup P™(|f] > ) < ¢

(a) Were P™ and F™ fixed, the stochastic equicontinuity of \/n <P P(”)) would fol-

low from standard empirical process theory. A small variation of the Equicontinuity Lemma,
Theorem VII.15 of Pollard (1984), accommodates changing probability measures and func-
tion classes. The variation presented below ignores measurability qualifications that are not
relevant for the present application.

Lemma 1. Given function classes #™ and probability measures 2™, n € N. Assume for
any € > 0,m > 0, there is v > 0 such that

lim sup 2™ (J (7, @(”),ﬁ(")) > 77) <e€

Then there exists & > 0 such that

lim sup 2™ (sup | (e@,(l”) — @(”)) (f—9)| > 77) <€

" Ol

where [5](n) = {(f,g) e FM . M (f - g)? < 52}.
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The proof follows by superficial changes to the proof of the form for fixed .# ™ and £2™
cited above, and is omitted.

The stochastic equicontinuity (2a) follows from the conclusion of the Lemma by setting
P = p) Z0) — P F The assumptions of the Lemma hold by similar arguments as
in 1. That is, the functions in F are monotonic in #, so the graphs have discriminating
polynomial p(z) = x + 1 for all n, and then it follows from the Approximation Lemma, I1.25
of Pollard (1984), that J (v, P™, F™) is O(y) deterministically.

(b) For 6 > 0,
Z -7 ?
PR — {2 = 16P™) (pw (o <G < 9‘ Z, s))
. Z -7
§16P()(0< o <0>

— 16E™ (ng)z,(eys — 8 — 1/2) .

For any ¢ > 0 and large enough n, |[F(™ — F(®)| < ¢/32, so Fén_)Z,(H\S -5 —1/2 <

F2L 018 —S|)—1/2+¢/32 = foé\s—s’\ F5°)(u)du + €¢/32. By the Dominated Convergence
Theorem, and since the law of S doesn’t change with n, there is 6 > 0 such that for large

enough n, E™ f06\S—S’\ féof)z,(u)du < €/32. For such n, the last expression of the above

display is < e.

(c) Asymptotic normality is established in 3 below, implying consistency.

3. Expanding (4) to first order,

Jn ((E(nw) (6) — (B (%g(n)))
=vn ( — %W)) % E™#) (9) +Vn-o ( _ %M) '

f=ELp(n)
H2

As (E™7) () = 2P0 (25 < 0) =1 = B (2F5",(01S = §')) — 1) , the derivative of
(

R d n /
< (B™#) (9) = E <2F§_>Z,(9!S =S5 - 1)

=B (25 - S'1/525(015 - 5'))
= 2/ (0)B|S = §'| + 2 (1S = §'| (#6018 = S'1) = ££,(0)) ) +o(1).
(6)

The derivative may be brought inside the expectation in the second equality since the deriva-
tive <& <2FgL_)Z,(9|S -9 — 1) = 2|S—S’|f§1_)z,(9|S—S’|) is nonnegative. Furthermore, the



error 2F (|S -5 (fg’f)z,(e\s -5 — féof)z, (O))) — 0 as § — 0 by dominated convergence,

since model 14 implies S — ' € L', and assumption 2, f(>) € L2 implies f(*) % f(>) is
bounded.

Substituting the derivative expression into (6),

Vit ((B9) 6) - (507) (L))

K2
= Vn (é - ﬂw)) L2B|Sy — S| EC) N Z) + v/n -0 (é - ﬂm”))
M2 H2
NG (é - ﬂf)(")) 2B|S; — S EC) F2)(Z) + v/n < ) o(1)+vn-o (é - ﬂe“”) .
M2 Mz M2

Finally, \/n <é — %6(”)) is asymptotically equivalent under P™ to a centered and scaled

ITID average,

Aot (-2

= oo (1) Open (1) + <= 37 (2,8 = ).

using again the second moment assumptions 2 and 14.

Therefore \/n <0 4 ”)) = /n <u71n > ZiS; — %9(")> + opm (1), and the common
distributional limit of the left and right hand sides is given by a traingular array CLT,

ZZS — gL
Mzn
2
Var(® Mzzs Var®'Z 1 (om)? (L_ <%) >
2 2
(n) Var(® 7
Z;8; — Lo | L5 N [0, ——Z

Proof of Corollary 4. The proof of Theorem 3 shows that the right-hand side of (2) is uni-
formly Opw(n~1/2) and does not contribute to the asymptotic variance. The variance of
(3) is 4/9, the approximation used in the uncorrected Begg test, as discussed in Michael

O



and Ghebremichael (2023). By a triangular array LLN the asymptotic variance of (4) is
Var Z/ s (2E|Sy — So|Ef7(Z))?. The covariance of (3) and (4) is

Cov (\/ﬁ(nm)ﬂ(o)’ i <% B %

=2E|S) — So|E™ f4(Z) - nCov™ (1™ 7(0), ZS / 112) + o(1).

9<">) 2E|S) — 52|E<°O>fg°°)(2)> +o(1)

Using the relation
E(n) (lel{Zl — ZQ < 0}{51 — S2 > 0}) + E(n) (lel{Zl — ZQ > 0}{51 — SQ < O})

1
= =5 E™|S = S|E™(ZF(2)),

it follows that

n n) —Za n 2 O n Z;—Z 1 ¢
nCov™ (1™ #(0), ZS / i) = nCov™ (E;QP( ) (h < 0' Zj,Sj) ’n_uQ;ZjSJ)

4 Z1— 4
=—Cov | P <0
H2 < (51—5

_ ;_25|51 — So|B(ZF4(Z)) + o(1).

Zl, Sl> s ZISI) + 0(1)

]

Proof of Corollary 5. The centering for the test statistic under P™ used in Theorem 3 is

pns (&g(n)) _ 9pln) (Zl —Z _m <n>> _q

Mo S1 =8 e

=2p™ ((z1 gz - Mg, - S)> (S —8) < 0) —1
M2

= 4p™ ({Z1 —7Z - %m")(sl -9 < 0} {S) — 8> 0}) — 1.
2

The derivative of the probability in the last line at lim 8 = 0 is

d 0o pp1/p2d™u n)
dH(")/O / fZ1—Z2(u)fS1—Sg(U)dUdU

M1 > n n
= a6 ) sy )
om=0  H2 Jo

0(n)=0

= fgf)fzg(o)E(Sl — 5281 — S > 0)
= EMW Y, (Z)E|S) — Ss|/2.

Therefore

— 2Ef2(Z)E|S) — Sl
6(m)=0

d . 125}
Emas [ o)
age T (M2



Combining the above expressions for the centering with the expression for the asymptotic
variance of 7(#) given in Theorem 3,

P [ /(D) _ p ﬁﬂé)—(ﬂ”)ﬂ(m/mew)) S B8 /126

= > 21—« - > Zl—a — VN =
Var™(7(9)) Var™(7(6)) Var™(7(9))

_ p() \/ﬁ%(é) — (B"7) (1 /120™) o \/EM/MH(")E(")%)(O) +o(1)
Var®™ (7(4)) Var™ (7(6))

LB f,(Z)E|S1 — Sa|h
S1-0 2 B f2(Z)E|S) — 5|

—a— \/% N 4%3&(2)(@;(2) Var Z — 2E(ZF4(Z)))
O

Proof of Lemma 7. A similar maximization problem was encountered in Michael (2024),
with the objective there being instead E|X; — X,|//FEX?. As there we use the variational
calculus to carry it out.

Maximizing F|X; — X5|/+/Var X; is the same as maximizing £|X; — Xs| subject to the
constraint that Var(X;) = 1. Since the objective is unaffected by the mean of the X, we take
it to be 0. Let F' denote the CDF of the X;, and suppose first that X > x( for an arbitrary
number zy < 0. Michael and Ghebremichael (2023, Theorem 4) gives the representation

EIX; — X,| = 2 /Oo Fz)(1 — F(z))da, (1)

—00

and also shows that the mapping F' — [ F(z)(1 — F(z))dz is concave. The problem can
then be stated in terms of the CDF F of X as

maximize 2 /00 F(z)(1 — F(z))dx

Zo

subject to: 2/ z(l— F(x))dx =1

Zo

/ T - Fa))dr = |

zo
F=0on {x <}
lim F(z) =1

T—r00

F monotone

The Euler-Lagrange equation is F(2) = (1 —2X\z — Ag), with A, Ay to be determined. The
monotonicity constraint implies \; < 0 and the constraint 0 < F' < 1 implies
1—X cr< 1+ Ao
r< — :
2\ 2\




The moment constraints imply A\; = —1/v/12, Ay = 0, regardless of the postulated left
support point xy. Therefore,

1 1
F(x):§+ﬁx, —V3<a<V3

which is the CDF of a uniformly distributed RV with mean 0 and variance 1. Applying
formula (7), B|X; — Xo| = 2//3. O
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