
Proof of Theorem 2. 1. Let Xn denote the n × 2 design matrix for the Egger regression,
i.e., a column of 1′s and a column of the regressors Sj. Let ~Z denote the column vector

of responses Zj = Yj/σj. The coefficient β̂0, the first component of (XT
nXn)−1XT

n
~Z, is

β̂0 = (V̂ar(~S))−1n−1
∑n

j=1(S
2 − SSj)Zj, where V̂ar(~S) = n−1

∑
j(Sj − S)2. The variance

estimate is V̂ar(β̂0) = SSE·S2

n(n−2)V̂ar(~S)
, where SSE = |(I −X(XTX)−1XT )~Z|22. The Egger test

statistic may therefore be written in terms of Z and S as

√
nβ̂0√

V̂ar(β̂0)
=
n−1/2

∑n
j=1(S

2 − SSj)Zj√
S2V̂ar(~S)SSE/(n− 2)

. (1)

The numerator in (1) may be replaced by an asymptotically equivalent IID normalized
average,

√
n

n∑
j=1

(S2 − SSj)Zj −
√
n

n∑
j=1

(E(S2)− E(S)Sj)Zj →
P (n)

0.

By the CLT,
√
n
(
E(S2)− S2

)
is OPn(1). By a weak LLN for trianular arrays Z →P (n) 0.

Therefore
√
n
(
E(S2)− S2

)
Z → 0 in probability along P (n). Similarly, the CLT implies

√
n
(
E(S)− S

)
is OPn(1). Orthogonality of Z and S and uniform integrability of Z under

P (n) implies SZ →Pn E0(SZ) = 0. Therefore SZ
(
E(S)− S

)
→ 0 along P (n).

For the denominator, SSE/(n−2) = ~ZT (I−X(X tX)−1X t)~Z/n→ Var(Z) in probability
along P (n). The form

ζTnX(XTX)−1XT ~Z = (V̂ar(~S))−1
(
Z(S2 Z − S SZ) + ZS(ZS − Z S)

)
= (V̂ar(~S))−1

(
S2(Z)2 + (ZS)2 − 2S Z SZ

)
.

converges in probability to 0 along P (n), with each monomial converging to E(S2)E(Z2).

Therefore SSE/(n − 2) = n−1 ~ZT ~Z + oP (n)(1), which tends along P (n) to E(Z2) = Var(Z),
as above.

2. By part 1, the standardized test statistic is asymptotically equivalent to an IID average,
and asymptotic normality follows from the Lindeberg-Feller CLT. The conditions of that
theorem follow from the assumptions here on S and Z, which in fact imply that the random
variables {Var(S)−1(E(S2) − E(S)S1)Z1 − En(Z)}, as the distribution Pn varies, are L2-
bounded.
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The local limiting power at the null θ = 0 is then

lim
n
P (n)

 β̂0√
Var(β̂0)

> tn−1,1−α

 = lim
n
P (n)

(
n−1/2

∑n
j=1 Var(S)−1(E(S2)− E(S)Sj)Zj√

Var(Z)E(S2)/Var(S)
> tn−1,1−α

)

= lim
n
P (n)

(
n−1/2

∑n
j=1 (Var(S)−1(E(S2)− E(S)Sj)Zj − µn)√

Var(Z)E(S2)/Var(S)
> tn−1,1−α −

n−1/2µn√
Var(Z)E(S2)/Var(S)

)

= 1− Φ

(
z1−α −

h√
Var(Z)E(S2)/Var(S)

)
.

Proof of Theorem 3. Decomposing the left hand side of (3) as

√
n

(
τ̂(θ̂)− (E(n)τ̂)

(
µ1

µ2

θ(n)
))

=
√
n
(
τ̂(θ̂)− (Π(n)τ̂)(θ̂)

)
(2)

+
√
n((Π(n)τ̂)(θ̂)− (E(n)τ̂)(θ̂)) (3)

+
√
n

(
(E(n)τ̂)(θ̂)− (E(n)τ̂)

(
µ1

µ2

θ(n)
))

, (4)

the proof is divided in 3 steps:

1.
√
n
(
τ̂(θ̂)− (Π(n)τ̂)(θ̂)

)
= oP(n)(1)

2.
√
n((Π(n)τ̂)(θ̂)− (E(n)τ̂)(θ̂)) =

√
n(Π(n)τ̂)(0) + oP(n)(1)

3.
√
n
(

(E(n)τ̂)(θ̂)− (E(n)τ̂)
(
µ1
µ2
θ(n)
))

=
√
n
(
ZS
µ2
− µ1

µ2
θ(n)
)
· 2E|S1 − S2|E(∞)f

(∞)
Z (Z) +

oP(n)(1).

1. Let
g(n)(θ) =

√
n
(
τ̂(θ)− Π(n)τ̂(θ)

)
,

so the right-hand side of (2) is g(n)(θ̂). So it is enough to show that supθ |g(n)(θ)| =
OP (n)(n−1/2).

g(n)(θ) =
√
n
(
τ̂(θ)− Π(n)τ̂(θ)

)
= 2
√
n

(
n

2

)−1 ∑
1≤j<k≤n

({
Zj − Zk
Sj − Sk

< θ

}
− P (n)

(
Zj − Zk
Sj − Sk

< θ

∣∣∣∣Zj, Sj)
−P (n)

(
Zj − Zk
Sj − Sk

< θ

∣∣∣∣Zk, Sk)+ P (n) ⊗ P (n)

(
Zj − Zk
Sj − Sk

< θ

))
.
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For any fixed θ and n, the last expression is 2
√
n times a U-statistic with bivariate kernel

((z, s), (z′, s′)) 7→
{
z − z′

s− s′
< θ

}
− P (n)

(
z − z′

s− s′
< θ

∣∣∣∣ z, s)
− P (n)

(
z − z′

s− s′
< θ

∣∣∣∣ z′, s′)+ P (n) ⊗ P (n)

(
z − z′

s− s′
< θ

)
. (5)

Let F̃ (n) denote the class of functions (5) as θ ∈ R varies. The kernels in this class give rise
to degenerate U-statistics with respect to P(n), i.e., for any f ∈ F̃ (n) and (z, s),

P (n)f((Z, S), (Z ′, S ′) | (Z, S) = (z, s)) = 0.

Nolan and Pollard (1987, 1988) provides a bound for the supremum of |g(n)(θ)| over
a class of degenerate bivariate kernels such as F̃ (n). Given an IID sample x1, . . . , x2n, let
Tn denote the random measure that places mass 1 on all pairs of observations of the form
(x2j, x2k), (x2j−1, x2k−1), (x2j−1, x2k), or (x2j, x2k−1), where j 6= k, 1 ≤ j, k ≤ n. Given a class
of real function F , measure µ, and u > 0, let N(u, µ,F) denote the L2(µ) covering number

of F , and let J(µ,F) =
∫ 1

0
logN(u, µ,F)du denote the associated covering integral. Let F

denote a bound for the functions in F̃ (n). By Theorem 6 of Nolan and Pollard (1987), there
is a constant c such that

P(n) sup
F̃(n)

|g(n)| ≤ c√
n
P(n)

(
1

4
sup
F̃(n)

√
Tnf 2

n2
+

√
TnF 2

n2
J
(
Tn, F̃ (n)

))
.

With two applications of the Cauchy-Schwarz inequality,

P(n) sup
F̃(n)

|g(n)| ≤ c√
n

√
P(n)

TnF 2

n2

(
1 +

√
P(n)J(Tn, F̃ (n))2

)
.

Taking the bound F = 4 for f ∈ F̃ (n),
√

P(n) TnF 2

n2 ≤ 64. Since F̃ (n) ⊂ F + 2P (n)F + P (n) ⊗
P (n)F , Lemma 16 of Nolan and Pollard (1987), implies

N(u, Tn, F̃ (n)) ≤ N(u/4, Tn,F) ·N(u/16, Tn, P
(n)F) ·N(u/64, Tn, P

(n)F) ·N(u/64, Tn, P
(n) ⊗ P (n)F).

The functions in each of the classes F , P (n)F , and P (n) ⊗ P (n)F are monotonic in θ, so
each has a linear discriminating polynomial, p(x) = x + 1. By the Approximation Lemma,
II.25 of Pollard (1984), there exist constants A,W , depending only on the discriminating
polynomial, such that

N(u, F̃ (n)) ≤ A
(u

4

)−W
· A
( u

16

)−W
· 2A

( u
64

)−W
= 2A3

(
u3

46

)−W
.

Therefore,

J(Tn, F̃ (n)) =

∫ 1

0

logN(u, Tn, F̃ (n))du ≤
∫ 1

0

log

(
2A3

(
u3

46

)−W)
du

is bounded uniformly in n.
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2. Let P
(n)
n denote the empirical measure on a sample of size n under P (n). For θ ∈ R, let

h
(n)
θ denote the function (z, s) 7→ 4P (n)

(
Z−Z′

S−S′ < θ
∣∣Z = z, S = s

)
. Then

√
n
(
(Π(n)τ̂)(θ)− (E(n)τ̂)(θ)

)
=
√
n

(
4

n

n∑
j=1

P (n)

(
Zj − Z
Sj − S

< θ

∣∣∣∣Zj, Sj)− 4P (n) ⊗ P (n)

(
Z − Z ′

S − S ′
< θ

))

=
√
n
(
P (n)
n − P (n)

)
(h

(n)
θ ).

For fixed n, letting θ vary,
√
n
(
(Π(n)τ̂)(θ)− (E(n)τ̂)(θ)

)
is therefore an empirical process

indexed by the class of functions

P (n)F =
{
h
(n)
θ : θ ∈ R

}
.

Letting n vary gives a sequence of processes, in terms of which (3) is
√
n
(
P (n)
n − P (n)

)
(h

(n)

θ̂
− h(n)0 ) = oP(n)(1),

which follows on showing

(a)
√
n
(
P

(n)
n − P (n)

)
is stochastically equicontinuous along P (n), that is, for any η > 0, ε >

0, there is δ > 0 such that

lim sup
n→∞

P(n)

(
sup
[δ](n)
|
√
n
(
P (n)
n − P (n)

)
(h

(n)
θ − h

(n)
θ′ )| > η

)
< ε,

where [δ](n) = {(θ, θ′) ∈ P (n)F (n) : P (n)(h
(n)
θ − h

(n)
θ′ )2 ≤ δ2},

(b) For any ε > 0, there is δ > 0 such that |θ| < δ implies lim supP (n)(h
(n)
θ − h

(n)
0 )2 < ε,

and

(c) θ̂ is consistent for 0 along P (n), i.e., for any δ > 0, ε > 0, lim supP (n)(|θ̂| > δ) < ε.

(a) Were P (n) and F (n) fixed, the stochastic equicontinuity of
√
n
(
P

(n)
n − P (n)

)
would fol-

low from standard empirical process theory. A small variation of the Equicontinuity Lemma,
Theorem VII.15 of Pollard (1984), accommodates changing probability measures and func-
tion classes. The variation presented below ignores measurability qualifications that are not
relevant for the present application.

Lemma 1. Given function classes F (n) and probability measures P(n), n ∈ N. Assume for
any ε > 0, η > 0, there is γ > 0 such that

lim sup
n

P(n)
(
J
(
γ,P(n),F (n)

)
> η
)
< ε.

Then there exists δ > 0 such that

lim sup
n

P(n)

(
sup
[δ](n)
|
(
P(n)

n −P(n)
)

(f − g)| > η

)
< ε,

where [δ](n) =
{

(f, g) ∈ F (n) : P(n)(f − g)2 < δ2
}
.
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The proof follows by superficial changes to the proof of the form for fixed F (n) and P(n)

cited above, and is omitted.

The stochastic equicontinuity (2a) follows from the conclusion of the Lemma by setting
P(n) = P (n),F (n) = P(n)F . The assumptions of the Lemma hold by similar arguments as
in 1. That is, the functions in F (n) are monotonic in θ, so the graphs have discriminating
polynomial p(x) = x+ 1 for all n, and then it follows from the Approximation Lemma, II.25
of Pollard (1984), that J

(
γ, P (n),F (n)

)
is O(γ) deterministically.

(b) For θ > 0,

P (n)(h
(n)
θ − h

(n)
0 )2 = 16P (n)

(
P (n)

(
0 <

Z − Z ′

S − S ′
< θ

∣∣∣∣Z, S))2

≤ 16P (n)

(
0 <

Z − Z ′

S − S ′
< θ

)
= 16E(n)

(
F

(n)
Z−Z′(θ|S − S ′|)− 1/2

)
.

For any ε > 0 and large enough n, |F (n) − F (∞)|∞ < ε/32, so F
(n)
Z−Z′(θ|S − S ′|) − 1/2 <

F
(∞)
Z−Z′(θ|S−S ′|)− 1/2 + ε/32 =

∫ δ|S−S′|
0

f
(∞)
Z−Z′(u)du+ ε/32. By the Dominated Convergence

Theorem, and since the law of S doesn’t change with n, there is δ > 0 such that for large

enough n, E(n)
∫ δ|S−S′|
0

f
(∞)
Z−Z′(u)du < ε/32. For such n, the last expression of the above

display is ≤ ε.

(c) Asymptotic normality is established in 3 below, implying consistency.

3. Expanding (4) to first order,

√
n

((
E(n)τ̂

)
(θ̂)−

(
E(n)τ̂

)(µ1

µ2

θ(n)
))

=
√
n

(
θ̂ − µ1

µ2

θ(n)
)

d

dθ

(
E(n)τ̂

)
(θ)

∣∣∣∣
θ=

µ1
µ2
θ(n)

+
√
n · o

(
θ̂ − µ1

µ2

θ(n)
)
.

As
(
E(n)τ̂

)
(θ) = 2P(n)

(
Z−Z′

S−S′ < θ
)
− 1 = E

(
2F

(n)
Z−Z′(θ|S − S ′|)− 1

)
, the derivative of

θ 7→
(
E(n)τ̂

)
(θ) is

d

dθ

(
E(n)τ̂

)
(θ) =

d

dθ
E
(

2F
(n)
Z−Z′(θ|S − S ′|)− 1

)
= E

(
2|S − S ′|f (n)

Z−Z′(θ|S − S ′|)
)

= 2f
(∞)
Z−Z′(0)E|S − S ′|+ 2E

(
|S − S ′|

(
f
(∞)
Z−Z′(θ|S − S ′|)− f (∞)

Z−Z′(0)
))

+ o(1).

(6)

The derivative may be brought inside the expectation in the second equality since the deriva-

tive d
dθ

(
2F

(n)
Z−Z′(θ|S − S ′|)− 1

)
= 2|S−S ′|f (n)

Z−Z′(θ|S−S ′|) is nonnegative. Furthermore, the
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error 2E
(
|S − S ′|

(
f
(∞)
Z−Z′(θ|S − S ′|)− f (∞)

Z−Z′(0)
))
→ 0 as θ → 0 by dominated convergence,

since model 14 implies S − S ′ ∈ L1, and assumption 2, f (∞) ∈ L2, implies f (∞) ∗ f (∞) is
bounded.

Substituting the derivative expression into (6),

√
n

((
E(n)τ̂

)
(θ̂)−

(
E(n)τ̂

)(µ1

µ2

θ(n)
))

=
√
n

(
θ̂ − µ1

µ2

θ(n)
)
· 2E|S1 − S2|E(∞)f

(∞)
Z (Z) +

√
n · o

(
θ̂ − µ1

µ2

θ(n)
)

=
√
n

(
θ̂ − µ1

µ2

θ(n)
)
· 2E|S1 − S2|E(∞)f

(∞)
Z (Z) +

√
n

(
θ̂ − µ1

µ2

θ(n)
)
· o(1) +

√
n · o

(
θ̂ − µ1

µ2

θ(n)
)
.

Finally,
√
n
(
θ̂ − µ1

µ2
θ(n)
)

is asymptotically equivalent under P (n) to a centered and scaled

IID average,

√
n

(
θ̂ − µ1

µ2

θ(n)
)

=
√
n

(∑
ZjSj∑
S2
j

− µ1

µ2

θ(n)
)

=

(
n∑
S2
j

− 1

µ2

)
· 1√

n

∑
ZjSj +

1√
nµ2

∑
(ZjSj − µ1θ)

= oP (n)(1) ·OP (n)(1) +
1√
nµ2

∑
(ZjSj − µ1θ) ,

using again the second moment assumptions 2 and 14.

Therefore
√
n
(
θ̂ − µ1

µ2
θ(n)
)

=
√
n
(

1
µ2n

∑
j ZjSj −

µ1
µ2
θ(n)
)

+ oP(n)(1), and the common

distributional limit of the left and right hand sides is given by a traingular array CLT,

E(n) 1

µ2n

∑
j

ZjSj = θ(n)
µ1

µ2

Var(n)
1

µ2n

∑
j

ZjSj =
Var(n)Z

µ2

+
(
θ(n)
)2( 1

µ2

−
(
µ1

µ2

)2
)

√
n

(
1

µ2n

∑
j

ZjSj −
µ1

µ2

θ(n)

)
P(n)

 N

(
0,

Var(∞)Z

µ2

)

Proof of Corollary 4. The proof of Theorem 3 shows that the right-hand side of (2) is uni-
formly OP (n)(n−1/2) and does not contribute to the asymptotic variance. The variance of
(3) is 4/9, the approximation used in the uncorrected Begg test, as discussed in Michael
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and Ghebremichael (2023). By a triangular array LLN the asymptotic variance of (4) is
VarZ/µ2 (2E|S1 − S2|EfZ(Z))2 . The covariance of (3) and (4) is

Cov

(√
n(Π(n)τ̂)(0),

√
n

(
ZS

µ2

− µ1

µ2

θ(n)
)
· 2E|S1 − S2|E(∞)f

(∞)
Z (Z)

)
+ o(1)

= 2E|S1 − S2|E(n)fZ(Z) · nCov(n)(Π(n)τ̂(0), ZS/µ2) + o(1).

Using the relation

E(n) (Z1S1{Z1 − Z2 < 0}{S1 − S2 > 0}) + E(n) (Z1S1{Z1 − Z2 > 0}{S1 − S2 < 0})

= −1

2
E(n)|S1 − S2|E(n)(ZFZ(Z)),

it follows that

nCov(n)(Π(n)τ̂(0), ZS/µ2) = nCov(n)

(
2

n

n∑
j=1

2P (n)

(
Zj − Z
Sj − S

< 0

∣∣∣∣Zj, Sj) , 1

nµ2

n∑
j=1

ZjSj

)

=
4

µ2

Cov

(
P

(
Z1 − Z
S1 − S

< 0

∣∣∣∣Z1, S1

)
, Z1S1

)
+ o(1)

=
−2

µ2

E|S1 − S2|E(ZFZ(Z)) + o(1).

Proof of Corollary 5. The centering for the test statistic under P (n) used in Theorem 3 is

E(n)τ̂

(
µ1

µ2

θ(n)
)

= 2P (n)

(
Z1 − Z
S1 − S

<
µ1

µ2

θ(n)
)
− 1

= 2P (n)

((
Z1 − Z −

µ1

µ2

θ(n)(S1 − S)

)
(S1 − S) < 0

)
− 1

= 4P (n)

({
Z1 − Z −

µ1

µ2

θ(n)(S1 − S) < 0

}
{S1 − S > 0}

)
− 1.

The derivative of the probability in the last line at lim θ(n) = 0 is

d

dθ(n)

∫ ∞
0

∫ µ1/µ2θ(n)v

−∞
f
(n)
Z1−Z2

(u)fS1−S2(v)dudv

∣∣∣∣
θ(n)=0

=
µ1

µ2

∫ ∞
0

vf
(n)
Z1−Z2

(µ1/µ2θ
(n)v)fS1−S2(v)dudv

∣∣∣∣
θ(n)=0

= f
(n)
Z1−Z2

(0)E(S1 − S2;S1 − S2 > 0)

= E(n)f
(n)
Z1−Z2

(Z)E|S1 − S2|/2.

Therefore

d

dθ(n)
E(n)τ̂

(
µ1

µ2

θ(n)
) ∣∣∣∣

θ(n)=0

→ 2EfZ(Z)E|S1 − S2|.
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Combining the above expressions for the centering with the expression for the asymptotic
variance of τ̂(θ̂) given in Theorem 3,

P (n)

 √
nτ̂(θ̂)√

Var(n)(τ̂(θ̂))
> z1−α

 = P (n)

√nτ̂(θ̂)− (E(n)τ̂)(µ1/µ2θ
(n))√

Var(n)(τ̂(θ̂))
> z1−α −

√
n

(E(n)τ̂)(µ1/µ2θ
(n))√

Var(n)(τ̂(θ̂))



= P (n)

√nτ̂(θ̂)− (E(n)τ̂)(µ1/µ2θ
(n))√

Var(n)(τ̂(θ̂))
> z1−α −

√
n
µ1/µ2θ

(n)E(n)τ̂)(0)√
Var(n)(τ̂(θ̂))

+ o(1)


→ 1− Φ

z1−α − 2µ1
µ2
EfZ(Z)E|S1 − S2|h√

4
9

+ 4 (E|S1−S2|)2
ES2 EfZ(Z)(EfZ(Z) VarZ − 2E(ZFZ(Z)))

 .

Proof of Lemma 7. A similar maximization problem was encountered in Michael (2024),
with the objective there being instead E|X1 −X2|/

√
EX2

1 . As there we use the variational
calculus to carry it out.

Maximizing E|X1 −X2|/
√

VarX1 is the same as maximizing E|X1 −X2| subject to the
constraint that Var(X1) = 1. Since the objective is unaffected by the mean of the Xi, we take
it to be 0. Let F denote the CDF of the Xi, and suppose first that X ≥ x0 for an arbitrary
number x0 < 0. Michael and Ghebremichael (2023, Theorem 4) gives the representation

E|X1 −X2| = 2

∫ ∞
−∞

F (x)(1− F (x))dx, (7)

and also shows that the mapping F 7→
∫
F (x)(1 − F (x))dx is concave. The problem can

then be stated in terms of the CDF F of X as

maximize 2

∫ ∞
x0

F (x)(1− F (x))dx

subject to: 2

∫ ∞
x0

x(1− F (x))dx = 1∫ ∞
x0

(1− F (x))dx = |x0|

F = 0 on {x < x0}
lim
x→∞

F (x) = 1

F monotone

The Euler-Lagrange equation is F (x) = 1
2
(1− 2λ1x−λ2), with λ1, λ2 to be determined. The

monotonicity constraint implies λ1 ≤ 0 and the constraint 0 ≤ F ≤ 1 implies

1− λ2
2λ1

< x < −1 + λ2
2λ1

.
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The moment constraints imply λ1 = −1/
√

12, λ2 = 0, regardless of the postulated left
support point x0. Therefore,

F (x) =
1

2
+

1

2
√

3
x, −

√
3 ≤ x ≤

√
3,

which is the CDF of a uniformly distributed RV with mean 0 and variance 1. Applying
formula (7), E|X1 −X2| = 2/

√
3.
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