Exact Confidence Intervals for Small Sample Random Effects Meta-analysis

Haben Michael Adviser: Lu Tian

Summer 2017

・ロト ・回ト ・ヨト ・ヨト

3

1/21

Introduction

Method

Simulation

Future Work

Meta-analysis is a popular procedure for synthesizing a number of primary studies relating to a single effect into a single summary estimate of size and uncertainty rs4769613 [hg19: chr13-29138609; risk: C(0.525); other: T; Phet: 0.678]

Study	Cases	Controls	OR	95% CI	Ρ	
PE GWAS	8					
GOPEC deCODE ALSPAC	1005 1507 146	5297 296865 6130	1.23 1.23 1.16	(1.11-1.35) (1.09-1.38) (0.92-1.47)	3.08×10 ⁻⁵ 5.49×10 ⁻⁴ 2.05×10 ⁻¹	
[META]	2658	308292	1.22	(1.14-1.31)	3.22×10 ⁻⁸	-
PE Replic	ation					
MoBa FINNPEC	1142 580	1164 782	1.13 1.29	(1.00-1.27) (1.10-1.50)	$\begin{array}{c} 4.24 \times 10^{-2} \\ 1.21 \times 10^{-3} \end{array}$	- <u></u>
[META]	1722	1946	1.18	(1.08-1.30)	3.55×10 ⁻⁴	-
PE GWAS	+ Repli	cation				
[META]	4380	310238	1.21	(1.14-1.28)	5.38×10 ⁻¹¹	

(from "Variants in the fetal genome near FLT1 are associated with risk of preeclampsia," Nature Genetics, June 2017)

The most commonly used model is the random effects model:

$$y_k \stackrel{\text{ind.}}{\sim} \mathcal{N}(\theta_k, \sigma_k^2), k = 1, \dots, K$$

 $\theta_k \stackrel{\text{iid}}{\sim} \mathcal{N}(\Theta, \tau^2)$
 σ_k known

implying

$$y_k \sim \mathcal{N}(\Theta, \sigma_k^2 + \tau^2)$$

- Goal is inference on Θ
- τ², accounting for variability between the primary studies, is a nuisance parameter

The UMVU estimate of Θ is inverse-variance weighted

$$\frac{\sum_{k} (\sigma_{k}^{2} + \tau^{2})^{-1} y_{k}}{\sum_{k} (\sigma_{k}^{2} + \tau^{2})^{-1}}$$

with variance

$$(\sum_{k} (\tau^{2} + \sigma_{k}^{2})^{-1})^{-1}$$

 \blacktriangleright As τ^2 is unknown, typically the DerSimonian-Laird estimator $\hat{\tau}^2_{DL}$ is plugged in

$$\hat{\Theta}_{DL} = \frac{\sum_{k} (\sigma_{k}^{2} + \hat{\tau}_{DL}^{2})^{-1} y_{k}}{\sum_{k} (\sigma_{k}^{2} + \hat{\tau}_{DL}^{2})^{-1}}$$

A confidence interval

$$\left\{\hat{\Theta}_{DL} - z_{1-\alpha/2} \left(\sum_{k=1}^{K} (\hat{\tau}_{DL}^2 + \sigma_k^2)^{-1}\right)^{-1/2}, \hat{\Theta}_{DL} + z_{1-\alpha/2} \left(\sum_{k=1}^{K} (\hat{\tau}_{DL}^2 + \sigma_k^2)^{-1}\right)^{-1/2}\right\}$$

is obtained from an asymptotic pivot

$$T_0(\Theta; \mathcal{Y}) = (\hat{\Theta}_{DL} - \Theta)^2 \sum_{k=1}^{K} (\hat{\tau}_{DL}^2 + \sigma_k^2)^{-1} \rightsquigarrow \chi_1^2 \quad (K \to \infty)$$

- In many fields, meta-analyses on few (< 6) studies are common
- Even when many primary studies are available, sub-meta-analyses are routinely carried out using few studies

rs4769613 [hg19: chr13-29138609; risk: C(0.525); other: T; Phet: 0.678]

Study	Cases	Controls	OR	95% CI	Р	
PE GWAS	5					
GOPEC deCODE ALSPAC	1005 1507 146	5297 296865 6130	1.23 1.23 1.16	(1.11-1.35) (1.09-1.38) (0.92-1.47)	3.08×10 ⁻⁵ 5.49×10 ⁻⁴ 2.05×10 ⁻¹	
[META]	2658	308292	1.22	(1.14-1.31)	3.22×10 ⁻⁸	-
PE Replic	ation					
MoBa FINNPEC	1142 580	1164 782	1.13 1.29	(1.00-1.27) (1.10-1.50)	4.24×10 ⁻² 1.21×10 ⁻³	
[META]	1722	1946	1.18	(1.08-1.30)	3.55×10 ⁻⁴	-
PE GWAS	6 + Repli	cation				
[META]	4380	310238	1.21	(1.14-1.28)	5.38×10 ⁻¹¹	

(from "Variants in the fetal genome near FLT1 are associated with risk of preeclampsia," Nature Genetics, June 2017)

Problem: when the number of studies is few and heterogeneity is present, the pivot is a poor approximation

≣ ৩৭ে 8/21

…resulting in poor Type I error control

9/21

Introduction

Method

Simulation

Future Work

<ロ> < 部 > < 言 > く 言 > こ > う Q (C 10/21

In the absence of a statistic ancillary to the nuisance parameter, we obtain a CI for Θ at each value of the nuisance parameter and use their union as a conservative CI

Controls the Type I error rate, but at what cost?

- computational?
- power?

Computational costs

exploit symmetry of the problem

•
$$y_k \sim \mathcal{N}(\Theta, \sigma^2 + \tau^2)$$
 means $y_k - \Theta \sim \mathcal{N}(0, \sigma^2 + \tau^2)$

- ► reasonable to require of our testing procedure that testing $H_0: \Theta = \Theta_0$ given data y_1, \ldots, y_K be the same as testing $H_0: \Theta = 0$ given data $y_1 \Theta, \ldots, y_K \Theta$
- Equivariant test statistics respect the symmetry of the problem: T(y₁ − Θ, ..., y_K − Θ) = T(y₁,..., y_K) − Θ

- ► Using an equivariant test statistic we only need to compute the distribution at parameter points (0, \u03c6²)
 - can't apply this trick again, not a scale family because of σ_k
- ► So the problem is actually 1-dimensional
- Cost not much of an issue except for statistics that are relatively costly to compute, e.g., MLE
- Easily parallelized (as is the 2-D problem)

Our proposed statistics for testing the simple null H₀: (Θ, τ²) = (Θ₀, τ²₀):

$$\mathcal{T}\left\{(\Theta_{0},\tau_{0}^{2});\mathcal{Y}_{0}\right\}=\mathcal{T}_{0}(\Theta_{0};\mathcal{Y})+c_{0}\mathcal{T}_{lik}\left\{(\Theta_{0},\tau_{0}^{2});\mathcal{Y}\right\}$$

where

$$\begin{split} \mathcal{T}_{0}(\Theta_{0};\mathcal{Y}) = & (\hat{\Theta}_{DL} - \Theta_{0})^{2} \sum_{k=1}^{K} (\hat{\tau}_{DL}^{2} + \sigma_{k}^{2})^{-1} \\ \mathcal{T}_{lik} \left\{ (\Theta_{0},\tau_{0}^{2});\mathcal{X} \right\} = & -\frac{1}{2} \sum_{k=1}^{K} \left[\frac{(Y_{k} - \hat{\Theta}_{DL})^{2}}{\hat{\tau}_{DL}^{2} + \sigma_{k}^{2}} + \log \left\{ 2\pi (\hat{\tau}_{DL}^{2} + \sigma_{k}^{2}) \right\} \right] + \\ & \sum_{k=1}^{K} \frac{1}{2} \left[\frac{(Y_{k} - \Theta_{0})^{2}}{\tau_{0}^{2} + \sigma_{k}^{2}} + \log \left\{ 2\pi (\tau_{0}^{2} + \sigma_{k}^{2}) \right\} \right] \end{split}$$

- Weighted combination of DL statistic and an approximate likelihood ratio statistic
- Plug DL estimate of Θ into likelihood ratio statistic to avoid computing the MLE
- These are equivariant

Power, CI length

 Two sources of poor power performance when projecting to form a conservative CI

- The proposed estimators are quadratic in Θ, so the region is connected
- ► The deviation from the vertical of the centers of horizontal sections of the region has variance O(τ⁻⁴)

Outline

Introduction

Method

Simulation

Future Work

<ロ> < 部 > < 書 > < 書 > 目 のQC 18/21

Outline

Introduction

Method

Simulation

Future Work

- look for similar efficiencies with nonnormal primary study effects data, e.g., rare event proportions
- examining robustness against nonnormality