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A motivating example

Sports argument: Bill Belichick is a great
coach: When average players come to play for
him, their performance jumps up; when they
leave, they become average again.
Causal framework: Players have a potential outcome, their
performance under Belichick and not under Belichick. This
pre/post comparison approximates the difference between the
potential outcomes.
Sports counter-argument: It’s not Belichick. He’s just been
fortunate . . .
Causal framework: The association between Belichick
(treatment) and player performance (outcome) is spurious; it exists
due to a confounder. Is there some variable associated with
treatment and outcome?
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Sports counter-counter-argument: But
there was one year when the quarterback was
injured, and new players that year also
performed better than usual.

Causal framework: There are no unmeasured confounders; we can
obtain the causal effect by controlling for the known confounder.
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We postulate “potential outcomes,” random variables indexed by
treatment level

Ya(ω), a ∈ A

interpreted as the response of a unit ω if, possibly contrary to fact,
treatment level a were applied to ω and related to the observed
data by the consistency axiom

Y = YA = Ya

∣∣
a=A
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A “causal effect” can then be stated/defined in terms of the
potential outcomes, e.g.,

E(Y1 − Y0) “Average Treatment Effect”
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Can’t say much about Y1 only
knowing Y11{A = 1}.
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We need to be able to say
something about Y11{A = 0}
based off of Y11{A = 1}

randomization with respect to treatment, Ya ⊥⊥ A
recover Y1 by dividing Y1{A = 1} by P(A = 1)

in general, E(g(Ya)) = E
(
g(Y1{A=a})

f (A)

)
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“No Unmeasured Confounders”:
randomization holds conditional
on some covariate L. Compute

Y1 | L = l , the potential outcome
at each level l , now dividing by
the conditional treatment
probability (“propensity”).
Then integrate over L.

E(g(Ya)) = E
(
1{A = a}g(Y )

f (A | L)

)
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I (clones/copies interpretation) At any covariate level L = l , if
say, P(A = 1 | L = l) = 1/4, then there are 3 unobserved
units for every observed unit and (no unmeasured
confounders) these are homogenous as to Y1

I (likelihood perspective)

P(Y = y ,A = a, L = l)

= P(Y = y | A = a, L = l)P(A = a | L = l)P(L = l)

= P(Ya = y | A = a, L = l)P(A = a | L = l)P(L = l) (consistency)

= P(Ya = y | L = l)P(A = a | L = l)P(L = l) (NUC)

P(Ya = y ,A = a, L = l) /P(A = a | L = l) (positivity)

= P(Ya = y , L = l)
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Longitudinal setting: estimating the effect of a treatment regime in
the presence of time-varying confounding.
Central example: Estimating time to progression to AIDS under
HAART: Physician bases treatment on the patient’s CD4 count,
that treatment affects CD4 count, which in turn informs a
subsequent treatment decision. And CD4 count is prognostic of
the outcome.
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AtLt At+1Lt+1. . . . . . Y

I T time points t = 1, . . . ,T

I Treatment regime A = (A1, . . . ,AT ) ∈ AT discrete-valued

I Potential outcomes {Ya} indexed by fixed treatment regimes
a ∈ AT

I Observed outcome Y = YA =
∑

a 1{A = a}Ya (consistency)

I Covariates L = (L1, . . . , LT )
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similar targets such as

β = E(Ya)− E(Y0)

or
β1 : E(Ya) = β0 + β1

∑
t

at

(“marginal structural mean models”)
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Consider using a regression model to estimate β, e.g.:

E(Y | A = a) = E(Ya | A = a) = b0 + b1

∑
t

at

LT−1 is a confounder of the subsequent treatment and the
outcome, and so should be accounted for, e.g.,

E(Y | A, LT−1) = b0 + γ1LT−1 + b1

∑
t

At

on the other hand, controlling for L can block the effect of earlier
treatment.

AT−2LT−2 AT−1LT−1. . . Y
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The longitudinal generalization of “no unmeasured confounders” is

I “Sequential randomization assumption”: for all a and t,

Ya ⊥⊥ At | A1, . . . ,At−1, L1, . . . , Lt

Propensity score weights generalize to

WSRA = ΠT
t=1fAt |At−1,Lt

(At | At−1, Lt)

SRA will hold when all factors prognostic of Y used by the
physicians to determine whether treatment A is given at t are
recorded in At−1, Lt
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A marginal structural mean model (“MSMM”) is a model on the
marginal mean of the potential outcomes,

E(Ya) = µβ(a)

Besides SRA, also assume 0 < P(At = a | Lt−1,At−1) < 1 when
the conditioning event has positive probability

Then (Robins ’98)

E((Y − µβ(A))/WSRA) = 0.

I β̂ asymptotically normal (usual regularity conditions)
I Standard software routines can be used, as long as they allow

observations to be weighted
I similar change of measure interpretation as NUC theory
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Suppose there is some unobserved confounder U, which we would
need to have observed in order for “SRA” to hold:

Ya ⊥⊥ At | At−1, Lt−1,Ut−1 for all t, a

AtLt At+1Lt+1. . . . . . Y

U

Can we still identify/estimate the causal parameter?
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Informally, an IV is a random variable associated with covariates,
but orthogonal to the unobserved confounder.

A typical application is OLS with “endogenous error”

Y = βA + ε

Consistency of OLS generally requires ε be uncorrelated with A

YA

ε
A

βA

εY

19 / 38



Introduction
Relaxing SRA

Simulation
Closing remarks

Instrumental variables
Main result
Estimation in practice
Remarks on assumptions

Informally, an IV is a random variable associated with covariates,
but orthogonal to the unobserved confounder.

A typical application is OLS with “endogenous error”

Y = βA + ε

If in fact the error is correlated with the covariates, OLS is biased

YA

ε
A

βA

εY

β̂A
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Informally, an IV is a random variable associated with covariates,
but orthogonal to the unobserved confounder.

A typical application is OLS with “endogenous error”

Y = βA + ε

Suppose we have a random variable Z orthogonal to ε, but not to
A.

YAZ

ε

A

βA

εY

Z
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Examples of instrumental variables:

I assignment to treatment

I physician preference

I draft status

I distance to school/hospital
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A(j)

U(j)

L(j)

Z (j) A(j + 1)

U(j + 1)

L(j + 1)

Z(j + 1) Y. . . . . .

Assumptions

1. Ya ⊥⊥ At | At−1, Lt−1,Ut−1 for all t, a
2. IV assumptions

2.1 Yaz = Ya a.s. “exclusion restriction”
2.2 Zt ⊥⊥ U | At−1,Z t−1, Lt “IV independence A”
2.3 Z ⊥⊥ Ya | A, L “IV independence B”

3. and finally an assumption specific to our problem . . .
21 / 38
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3. An assumption specific to our problem, either of:

3.1 Independent Compliance Type:

E
[
At |U t , Lt ,At−1,Z t−1,Zt = 1

]
− E

[
At |U t , Lt ,At−1,Z t−1,Zt = 0

]
= ∆t

(
Lt ,At−1,Z t−1

)
or

3.2 Independent Causal Effect (binary treatment only):

Y(at=1,at+1,...,aT ) − Y(at=0,at+1,...,aT ) ⊥⊥ U t | Lt ,At−1,Z t−1
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Weighted Estimating Equation
Define weights by

W =
T∏
t=1

(−1)1−Zt ∆t

(
Lt ,At−1,Z t−1

)
fZt (Zt | At−1,Z t−1Lt).

Let h denote a vector-valued function of A of the same dimension
as β. Under the above assumptions,

E
(
h(A)(Y − µβ(A))/W

)
=
∑
a

h(a) (E(Ya)− µβ(a)) (−1)T−
∑

j aj = 0

where the summation is taken over all tuples a ∈ {0, 1}T−1
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fZt |At−1,Z t−1,Lt
and ∆t(At−1,Z t−1, Lt) require modeling/estimation

bootstrap or sandwich variance for inference

weight stabilization analogous to SRA theory
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3.1 “independent compliance type”

Interpretation: Zj assignment to treatment or control Aj the
treatment actually received assumption is that the difference in
proportions of compliance is accounted for by the observed data
.

AZ=0

AZ=1

0 1
0 never-taker defier
1 complier always-taker
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3.2 “independent causal effect”

assume A is binary. The assumption implies you could obtain the
ATE at a time point, i.e., β1 in the model
E (Y(aj−1,aj )) = β0 + β1aj , using non-IV methods. The theorem
allows you to go from here to estimating the causal parameter in
an arbitrary mean model.
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Special case

I T = 1 time point

I A, Z binary

I ∆j

(
Lj ,Aj−1,Z j−1

)
= ∆j(Aj−1)

I fZj |Aj−1,Z j−1,Lj
constant

Consider the saturated model

E(Ya) = β0 + β1a = E(Y0) + (E(Y1)− E(Y0))a

The weights are now (−1)1−Z , and

β̂1 =

∑
yt1{zt = 1} −

∑
yt1{zt = 0}∑

at1{zt = 1} −
∑

at1{zt = 0} YAZ

ε
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A perspective on the proposed assumptions:

We have an analogue of Robins’s g-formula:

µβ(a) = E(Ya) =∫
E(Y | A = a, L = l ,U = u)×∏

j

fLj ,Uj |Aj−1,Lj−1,U j−1
(lj , uj | aj−1, l j−1, uj−1)dν(lj , uj)

0 =

∫ (
E(Y | A, L,U)− µβ(A)

)∏
j

fLj ,Uj |Aj−1,Lj−1,U j−1
(lj , uj | aj−1, l j−1, uj−1)dν(lj , uj)
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Decompose the error as

Y − µβ(A) = Y − E (Y | A,Z , L,U)︸ ︷︷ ︸
exogenous

+E (Y | A,Z , L,U)− µβ(A)︸ ︷︷ ︸
“η”, endogenous

Using the “g-formula” analogue,

η =
∑
a

1{A = a}
T∑
t=1

φ
(a)
t (At−1, Lt)− E

(
φ

(a)
t (At−1, Lt) | At−1, Lt−1

)
=
∑
a

1{A = a}M(a)

for some φ
(a)
t , a sum of martingales at each level of A
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We seek functions of the observed data w(A, L,Z ) to form
estimating equations

E(w(A, L,Z )× (Y − µβ(A))) = E(w(A, L,Z )× η) = 0

We could treat this as an IV problem (η and A are dependent),
simply requiring a random variable Z orthogonal to η
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But we know more about the structure of η.

Under the proposed conditions the quantities 1/W are orthogonal
to η
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“Independent compliance type” assumption holds, “independent
causal effect” does not hold

J=2 J=3 J=4

Mean bias versus sample size of the weighted estimator, for J=2, 3, and
4, time points, compared with oracle (weights including observed and
unobserved confounders), SRA (weights including observed confounders),
and associational (no weighting) estimators.
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J=2 J=2 (axis rescaled) J=3

N=500
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target application: SMART trials
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see Wharton tech report (Tchetgen Tchetgen, Michael, Cui ’18)
for

I identification of the parameters of any marginal structural
models, e.g., failure time model or quantile model

I semiparametric efficient, multiply robust estimator partially
protects against model misspecification in that the estimator
is consistent whenever any one of three sets of nuisance
parameters are consistently estimated
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